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Preface

The Aim of the Book. This book is concerned with the subjects of vibrations and
system dynamics on an integrated basis.

Design engineers find themselves confronted with demands made on machin­
ery, structures and dynamic systems which are increasing at such a rate that dy­
namic performance requirements are always rising. Hence, advances in analysis
and design techniques have to keep pace with recent developments in strong
lightweight materials, more extensive knowledge of materials properties and
structural loading. Whereas the excitation applied to structures is always increas­
ing, the machine mass and damping is reduced. Consequently, unwanted vibra­
tions can have very serious effects on dynamic systems. It is, therefore, essential
to carry out vibration analysis as an inherent part of machine design.

The problems arising either from the observed or predicted dynamic behaviour
of systems are of particular interest in control theory. Vibration theory places
emphasis on analysis, which implies determining the response to given excita­
tions, and any design amounts to changing the system parameters so as to bring
about a satisfactory response. The improvement in performance achieved by
changing solely the parameters of the mechanical system is very limited. How­
ever, a new approach to system design has proved to be more successful. It con­
sists of designing forces that, when exerted on the system, produce a satisfactory
response . This approach, known as control, has become a ubiquitous part of the
engineering curriculum, completing the conventional mechanical disciplines .

It was L. Meirovitch who anticipated from a philosophical point of view that
the three subjects rigid-body dynamics, vibrations and control really belong to­
gether. With this most persuasive argument he prepared the ground for an inte­
grated approach .

Accordingly, C. F. Beards has pointed out, from a pedagogical point of view,
that an integrated approach also leads to greater efficiency in the teaching of vi­
brations and control , with the duplication of teaching material being eliminated .
The understanding of the individual subjects is likely to be enhanced because the
basic equations governing the behaviour of vibratory and control systems are the
same.

The reader interested in modern analysis and control techniques using state
space approach and progressive matrix methods should refer to the many excellent
advanced specialized texts. The aim of this book is to give practising designers,
engineers and students of mechanical engineering a thorough understanding of the
fundamentals of system dynamics. This more general area, covering vibrations
and control as essential parts, is linked with advanced texts, thus providing a theo­
retical basis appropriate to further studies. Methods associated with "classical "
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control theory are still widely used in dynamic system analysis. Most applications
can be handled with relatively simple models. In fact , tried-and-tested classical
design methods have been significantly enhanced by modern computational tech­
niques. The graphic al tools of classical design can now be more easily used with
computer graphics, and the effects of nonlinearities and model approximations
evaluated by computer simulation. Today's engineers should be familiar with both
classical methods and new computational improvements.

This book, which has been conceived as a professional reference book , should
also prove suitable as a textbook for courses ranging from the junior level to the
senior level. To help with the tailoring of the material to a given course, a chapter­
by-chapter review of the material follows .

Contents. Chapter I introduces the subject of systems modelling, and presents a
general classification of physical quantities. The quantities are classified in proven
categories following A. G. J. MacFarlane.

In Chapter 2 the interaction of dynamic system variables is visualized through
diagrams. Significant types of systematic diagram which apply to both electrical
circuits and dynamics of control are presented to demonstrate their use for creating
mechanical model systems. Though the key point of the representation of me­
chanical systems is the network diagram (mechanical circuit), a comprehensive
overview of useful types of diagram is given with respect to the mixed domain
system structure of present-day systems predominating in real engineering situa­
tions.

Chapter 3 provides mathematical relations between the system variables of in­
teracting mechanical elements (subsystems). System responses to relevant specific
excitations are evaluated by the classical method, including phasor response
analysis and subsequently Fourier series analysis. Passing to the Fourier integral
the benefits of the Fourier transform method are demonstrated. Considering mod­
ern frequency concepts in data reduction (spectral analys is) as well as response
calculations in shock and vibrations, special emphasis is placed on non-periodic
forc ing functions (pulse-type excitations) as well as on stochastic force time histo­
ries (random excitations). Subsequently, the Laplace transform method, which is
of great significance both for control and vibrations, is presented. Its suitability for
response calculations in shock and vibrations is exemplified with regard to sud­
denly applied external forces (step-type excitations). Finally, the special features
of Fourier and Laplace transform methods are contrasted.

In Chapter 4 frequency-response analysis comes into focus . Integral transform
methods introduced in Chapter 3 provide the link to transform models (oi-domain
models) covering sinusoidal steady-state analysis as well as frequency concepts.
An effective method for lumped-system analysis is gained by combining funda­
mental laws of general networks (force and motion interconnective requirements)
with frequency-response characteristics. The mechanical mobility has proved a
useful concept in vibration data analysis . The dynamic compliance (receptance) is
a characteristic related to mobility which turns out to be the more convenient con-
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cept for machinery considering deformations of structures as the result of vibra­
tory effects . By comparison, the principles underlying both concepts are presented
alongside the historical reciprocals known as mechanical impedance and dynamic
stiffness . According to mechanical circuit theorems, even for complex structures
simplifications are possible in order to provide the equivalent model system. As
pointed out, the network diagram reduction (repeated structures in parallel and
series) results in a direct viewing procedure for gaining the overall dynamic char­
acteristic of structures .

Chapter 5 treats the behaviour of energetic systems already taken as the basis
for H. M. Paynter's dynamic systems approach . The theory of vibrations is fa­
vourably covered in the following two problems, namely that of measuring in­
struments and that of system analysis , both of which are designed to reduce un­
wanted vibrations . Looking at desired vibrations being applied to a variety of
industrial processes or testing procedures (vibration method) , the problem of sys­
tem synthesis comes into focus. In order to meet the demand for rating and opti­
mizing the driving power flow in machinery , this book has made two attempts at
an energetic system approach . The transmission problem of power is dealt with
using either the mechanical 2-port or the mechanical circuit as significant 0)­

domain models and expressing the stationary flow of energy in terms of an alge­
braic function, the complex power. This relationship is graphically interpreted by
vector representation modified to power relations . Spectral decomposition of
power and its polar representation are efficient tools for specifying the significant
power parameters of vibrating systems over a frequency range of interest. Finally,
the concepts of phasor power and dynamic compliance are combined to utilize this
relationship for an integrated system design based on a dynamic and an energetic
approach .

The book concludes with Appendices giving an illustrative survey of normal­
ized temporal and frequency responses and visualizing response specifications
with the aid of graph (scale) papers. The polar plots of power originally introduced
in this text follow the rectangular spectral decomposition of power on coordinate
(squared) paper to facilitate the extraction of the relevant performance criteria.

Acknowledgements. This book has been evolved from a set of classnotes that I
have prepared at the Technical University Berlin for senior grade students of me­
chanical engineering. I have attempted to develop the view of the field in my own
way, keeping up with technological advances as well as experience gained by
teaching and practice over several years. I wish to acknowledge the helpful com­
ments and suggestions offered by my students . I am also indebted to the Federal
Institute for Materials Research and Testing, Berlin, which supported my research
into the complex dynamical system of the fatigue testing machine during my ac­
tivity in the design of scientific testing equipment.

I would like to express my appreciation to my former instructor and colleague
Professor K. Federn who contributed indirectly to this book through his early
publications and his excellent lecture on vibration machines . From this senior-
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level course I received the decisive impulse to deal with the subject of mechanical
vibrations by placing the focal point on vibration generator systems.

I wish to acknowledge gratefully the contribution of Dr. P. Schmiechen who
translated the classnotes of my course on vibration machines which form part of
this graduate text. Furthermore, Peter Craven provided his editorial assistance.

Special thanks are due to Christel BlaB for her excellent job in typing the
manuscript, which has been completed with endeavour by Renate Landgraf. I
would also like to thank Simone Nickel for her efficient help in producing the
figures, in parts supplemented by Gudrun Blamberg .

The editorial and production staff of Springer-Verlag deserve my thanks for
their cooperation and thorough professional work in producing this book.

Finally, I thank my wife for her patience and encouragement during the period
of preparation of this book.

Berlin, April 2000 Dietmar Findeisen
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Index of Formula Symbols

Symbol Quantity Symbol
for Unit

an Fourier coefficient
A(ro) amplitude (frequency-) response

A (rof) displacement response factor mIN
(amplitude ratio or gain assigned to a single
forcing frequency)

Ap active-power transmission factor
AQ real-power transmission factor

As transmisson factor of complex power
bn Fourier coefficient
C (viscous) damping coefficient Nslm
Cc critical damping coefficient Ns/m

Cn Fourier coefficient

cn Fourier coefficient amplitude

fn complex Fourier coefficient,

complex amplitude spectrum

~ (jro) dynamic compliance (receptance) mIN
gj (jzo) direct (driving-point) dynamic mIN

compliance
g j (jro) transfer dynamic compliance mIN
c, compliance of the damper mIN
Ck compliance of the spring mIN
Cm compliance of the mass mIN
e (t) effort (variable)
E error variable (transform)
Ep potential energy J

(T-storage element state)
Ek kinetic energy J

(P-storage element state)
f(t) flow (variable)

fd damped natural frequency s"
(cyclic)
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In harmonic frequency (cyclic) S· 1

10 natural frequency (cyclic) S·1

fi fundamental frequency (cyclic) S·l

F (t) force (excitation, driving force) N
E (t) complex excitation (of force) N
E(w) (Fourier) excitation transform, Ns

spectral density (of force )
E(P) (Laplace) excitation transform Ns

(driving transform)
A

F force (exc itation-) ampl itude N

E,E force phasor , (r.m.s.) force phasor N

r, damping (or damper) force N
Fg (local) force of gravity N
Fm inerti al (or mass) force N
Fs elastic (or spring) force N
FR rectangular pulse (offorce) N
Fo max imum height N
g acceleration of gravity m1s2

g(t) unit pulse response
(weighting func tion)

G (eo), G (jw) frequency response function,
frequency transfer function

G (P), (G (5» transfer function
h (t) unit step response
H (co) system function
I current, (r.rn.s.) value A
IR impul se (pulse area) of rectangular Ns

pulse (of force )
J moment of inertia kg i m?
k gear ratio 1
k elastic (spring) constant (stiffness) N/m
k torsional stiffness Nmlrad
K (jw) dynamic stiffness N/m
Kii(jW) direct (driving-point) dynamic stiffness N/m
Kij(jW) transfer dynamic stiffness N/m
K* '(jw) con verted dynamic stiffness (conj ugate) N/(ms)
s; stiffness of the damper N/m
Kk stiffness of the spring N/m
Km stiffness of the mass N/m

Ko proportional action coefficient
m mass (parameter) kg
p. (5) complex frequency (angular),
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complex pulsatance (Laplace domain
variable)

p momentum kg· mls
pes) probability density function m'

(of displacement magnitudes)
pes) cumulative probability distribution

function (of displacement magnitudes)
pet), Set) instantaneous power, actual power V·A

(rate of energy transfer)
P,P_,S_ active power (average power) W
Q reactive power V·A
Q quality factor (Q factor) 1
r (t) ramp response
R feed back signal (transform)
Rd (displacement) magnification factor 1
R (r) correlation function
RFF autocorrelation function (at force) N2

RFs, RsF cross-correlation function (between N·m
force and displacement, v.v.)

s; autocorrelation function (at displacement) m2

s (t) displacement (response) m

s (t) complex response (of displacement) m

~ (co) (Fourier) response transform, spectral m·s

density (of displacement)

s (P) (Laplace) response transform m·s

S displacement (-response) amplitude m

S displacement phasor m

s Init primary (initial) response m
S Res residual response m
S stal static deflection m

S (co) power spectral density
SFF auto-spectral density (auto-spectrum) N2·s

(at force)
SFs, SsF cross-spectral density (cross-spectrum) N·m·s

(between force and displacement, v.v)
s; auto-spectral density (at displacement) m2s

So white noise auto-spectrum (at force) N2·s
S (t) instantaneous power (actual scalar V·A

quantity or energy flow)
s(t) phasor of the instantaneous power V·A
~Uco) complex power (phasor power) V·A
S apparent power V·A
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t time (variable), s
time of observation (running parameter) s

T,M torque N'm

i torque (-excitation) amplitude N'm

T torque phasor N'm

T, r'.r transmissibility (force, velocity)
t; damped natural period s
Tf forcing period s

T" r time constant (relaxation time) s
To natural period s
T1, r, time constant s
U input, excitation
U (t) excitation displacement m
a amplitude of excitation displacement m
H excitation displacement phasor m
Uo (r) unit step (excitation), Heaviside function I
UI (r) unit ramp (excitation) s
U input (transform)
U voltage, (r.m.s.)value V
v output , response
v (r) velocity mls
11 amplitude of velocity mls

Q,!I velocity phasor, (r.m.s .) velocity phasor mls

V output (transform)
W reference variable (transform)
W,(A) work J
X controlled variable (transform)

X k (j1J) normalized dynamic stiffness (excitation

external or via spring)
X k

O

'(j1J) normalized phasor power (conjugate)

X k (j1J) normalized mechanical impedance I

X m (j1J) normalized dynamic stiffness (excitation I

via unbalanced rotating mass)
x; normalized stiffness of the damper
Xkk normalized stiffness of the spring
Xkm normalized stiffness of the mass
y manipulated variable (transform)
L(jro) (mechanical) mobility (mechanical mI(N· s)

admittance)

Xii (jro) direct (driving-point) (mechanical) mI(N· s)

mobility
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XijUW) transfer (mechanical) mobility mI(N · s)

r; mobilit y of the damper mI(N· s)

Yk mobility of the spring mI(N · s)

Ym mobil ity of the mass mI(N· s )

XkU11) normalized dynamic compliance (excitation 1
extern al or via spring)

z, U11) normalized dynamic compliance (excitation
via unbalanced rotating mass)

Ykc normalized compliance of the damper
Ya normalized compliance of the spring
Ykm normalized comp liance of the mass

z complex variable

ZUw) mechanical impedance Nslm

Zii Uw) direct (driving-point) mechanical Ns/m

impedance

ZijUw) transfer mechanical impedance Ns/m

z, impedance of the damper Ns/m

Zk impedan ce of the spring Ns/m

z, impedance of the mass Ns/m

a T-variable rate
(across power variable,
effort variable)

r imaginary part of complex variable z

8 damping coefficient s"

8 (r) unit pulse (excitation) s"
(Dirac or delta function, 0 funct ional)

t;,t'} damp ing ratio
(fraction of critical damping)

11 frequency ratio
(ratio of forcing frequenc y to undamped
natural frequency)
efficiency
(ratio of an output power
to an input power)

11r resonance frequency ratio 1

111 forcing frequency ratio 1
(assigned to a single forcing frequency)

t'} duty cycle (pulse control factor) 1

e angular position rad

A- T-variable state
(across energy variable)
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A. power factor 1
A , (0) logarithmic decreme nt Np
a P-variable state

(through energy variable)
a real part of complex variable p s

(or s)

(jF standard deviation (of force N
magnitudes)

o, standard deviation (of displacement m
magnitudes)

(j 2s variance (of displacement magnitudes) m2

1" P-variable rate
(through power variable, flow variable)

1" non-dimensional time (variable)
(natural time)

1" dummy variable in time s
(variab le of integration)

1"d normalized natural period

1"r normalized time constant
(non-dimensional relaxation time)

1"0 pulse duratio n s

1"1 normalized forcing period 1

CfJ angular displacement rad

¢ angular displacement amplitude rad

¢ angular displacement phasor rad

CfJo phase angle rad

CfJOF initial phase of (excitation) force rad

CfJos initial phase of displacement (response) rad

CfJI impedance angle rad

lfI phase difference (phase shift) rad
If/(w) phase (frequency-) response

v, phase difference (assigned to a rad
single forcing frequency)

W (real) angular frequency, pulsatance S-I

(frequency doma in variable)

Wer break point (comer) frequency S-I

Wd damped natural frequency S-I

(angular)

Wf forcing angular frequency S-I
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w,

Symbol
for Operator

d
F
F '
1m
L
L-1

Prob
Re
Res, Rk

Rs
T
s
L1
n
L
<l>
'I'

(displacement) resonance frequency
(angular)
natural frequency (angular)
fundamental frequency (angular)
harmonic frequency (angular)

Operator

differential
Fourier transformation
inverse Fourier transformation
imaginary part of
Laplace transformation
inverse Laplace transformation
probability
real part of
residue, residue of fip ) at Pk
modified Rayleigh quotient
operator, system operator
change of state
discriminant
product of
sum of
static function al operator
general functional operator

Remarks. Symbols for quantities being used are in the main conforming to ISO 2041:1990 (ElF)
(Vibration and shock-Vocabul ary), and IEC 50 (101):1977 (International Electrotechnical Voca­
bulary; Chapter 101: Mathematics).

Furthermore the following standards are of use concerning Quantities and units: ISO 31
(Part 1: Space and time; Part 2: Periodic and related phenomena ; Part 3: Mechanics; Part ll:
Mathematical signs and symbols for use in the physical sciences and technology), and Vibration
and shock-Experimental determination of mechanical mobility: ISO 7626/1 :1986 (E) (Part 1:
Basic defin itions and transducers), International Electrotechnical Vocabulary: IEC 50 (131):1978
(Chapter 131: Electric and magnetic circuits).

The sympol p is given for the complex frequency (complex pulsatance) though the symbol s
is in use as Laplace variable in mathematics and electrotechnical science. In mechanical science
the symbol s is recommended for displacement as the prime motion variable quantity.
Consequently it will be justified to give the "reserve symbol" p for the complex quantity or
Laplace domain variable.
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1 Theory of Dynamic Systems

The theory of dynamic systems was treated in a fundamental way by K. Kiipfmul­
ler, [1], to derive the general relationships between input and output quantities in
telecommunications. Later it was extended to automatic controller design and
evolved, along with information theory and the theory of automata, into mathe­
matical kybernetics, with applications not restricted to a particular area.

Physical systems or real-world arrangements are studied to understand and pre­
dict their behaviour or to gain an insight into their mechanism. Real arrangements
can be studied either directly by observation (experiment) or indirectly by study­
ing models of the physical system. The choice of study - direct or indirect - de­
pends on several factors including the existence and availability of the physical
system, its complexity, and the associated cost and time.

Some terms needed to distinguish between the various models are detailed in
the following paragraphs:

Experimental modelling treats selected mathematical relationships through "in­
duction" concerning an already existing system by fitting its observed input-output
data .

Scale models are of similar shape to the physical object, which can be used di­
rectly for measurements. Wind-tunnel facilities are examples of this type.

Other types of physical models are the prototype and the pilot model. The first
possesses an almost one-to-one correspondence with the system under considera­
tion; the latter may be a scaled-down physical representation of the real arrange­
ment. Physical models are usually costly and time consuming in addition to pre­
senting a modest level of flexibility in terms of modification.

Mathematical modelling of systems is a process which can be separated into
three partial problems: the initial identification and idealization of a system 's ele­
ments (subsystems); secondly, of their interaction; and finally , the systematic ap­
plication of basic (physical, biological, economic, etc .) laws . This process in­
volves "deduction" and offers distinct methods for reducing the disadvantages of
experimental modelling which have already been discussed.

The modern theory of dynamic systems includes modelling, analysis and con­
trol of systems. It offers mathematical methods for handling, reducing and ana­
lysing data from abstract objects by using digital computers, [2] to [4].

1.1
Definitions and Overview of Systems Modelling

The purpose of systems modelling is to predict the behaviour of an engineering
device consisting of a known collection of physical objects . This ordered arrange-
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ment defines the physical system. The model system is a collection of abstract ob­
jects with properties determined from experiments with the physical system. Its
components interact with one another and with their environment.

If they interact in such a way that a certain input results in a certain output, the
arrangement of components is called a control system; otherwise a system is un­
controlled. At this stage, the internal interactions are not considered ("black box")
so that the control system may be realized either as an open-loop or a closed-loop
arrangement.

A deterministic control system is one in which the input-output relationship is
predictable and repeatable at any time; otherwise, a system is stochastic . For ex­
ample, an electromechanical system such as the direct current motor (DC motor)
is a deterministi c control system that contains several electrical and mechanical
components. They interact in such a way that a specific value of the "input volt­
age" will result in a specific "output velocity" at any time.

A dynamic system is one where the output depends not only on the input at the
present time, but also on its previous behaviour. In contrast to a static system, a
system depending on past behaviour is said to have internal dynamics . This is an­
other way of saying that it has internal energy storage elements. Taking up the
example of the DC motor, its "output velocity" can only be predicted as long as its
entire time history is known and not just the instantaneous value of the "input
voltage".

A linear dynamic system is a system that has an input-output relationship where
the output to two inputs applied together (simultaneously) is simply the sum of the
individual outputs; otherwise , a system is nonlinear . An important property of lin­
ear systems concerns the transfer of combined signals. If the system excitation can
be represented as a linear combination of some independent input signals, the
system response will also be a linear combination of some independent output
signals, each corresponding to the output of the individual input. Direct conse­
quences of linearity are that the input-output relationship is scalable and that zero
excitation provides zero response .

A time-invariant dynamic system is a system where the characteristics of its
internal dynamics do not change with time; otherwise, a system is time-variant.
An important property of time-invariant systems concerns the transfer of time­
shifted signals. The system response to an input signal applied at a later time is
identical to that to an input signal applied at an earlier time. The only difference
between the two system responses is that they are shifted in time by the excitation
time shift.

For continuous-time systems the data about its internal dynamics are known as
continuous functions of time. If they are known at discrete instants of time only,
the systems are called discrete-time systems.

System analysis is continued by observing physical systems , in particular by
performing experiments. The only reason for this is that systems modelling has to
accept limitations in representing physical phenomena. The mathematical model
based on a set of abstract objects only imperfectly describes the arrangement of
interacting physical objects . The model response will exhibit the phenomena ob­
served on the physical system only if the model contains all relevant features of
the physical system. To ensure the correspondence between model and physical
system, current terms accepted in computer simulation should be defined .
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The computerized model is an operational computer program that implements a
system's model. A record of predicted behaviour of the system is obtained from
computer runes). Measurements, on the other hand, make it possible to obtain a
record (table, graph) of observations of the physical system behaviour.

The model verification is defined as the substantiation that a computerized
model represents the system's model within specified limits of accuracy.

The model validation implies in its essence the level of agreement between ob­
served and predicted behaviour. Validating a model requires comparing its be­
haviour (simulation results) with that of the physical system (measured or ob­
served data). This assumes that the verification step has been performed to avoid
confusing faults of the program with faults in the model.

Experimentation is a way of enhancing the understanding of physical phenom­
ena and fine-tuning model systems by expediently adapting mathematical meth­
ods. It is obvious that the building of a credible model is an iterative process; in
other words, a model is modified so as to reduce the differences between model
and system behaviour.

This book is concerned with deterministic, linear, time-invariant, continuous­
time, dynamic systems for which the relationships between excitation and system
response are derived from physical laws. The model behaviour can be represented
as an ordinary differential equation with constant coefficients.

Physical laws relating to mechanical vibrating systems include Newton 's sec­
ond law (for discrete systems) and other basic relations describing the behaviour
of mechanical elements . Excitations treated in the following are continuous-time
signals of various deterministic or stochastic types as they are applied to engi­
neering devices .

In system analysis terminology , systems are often referred to as plants, or proc­
esses. Moreover, the excitation is known as input signal , or simply input, and re­
sponse as output signal, or simply output. It is convenient to represent the rela­
tionship between input and output schematically in terms of a block diagram as
shown in Fig. 1.1.

First step ofmodelling . To define the functions or operations of a physical sys­
tem three entities must be identified : inputs, system functional block diagram , and
outputs . Inputs are the stimuli that cause the system to produce responses or out­
puts. There are two types of input variables acting on the system . Those inputs
which can be controlled or changed are considered as desirable, and those which
occur out of control are undesirable . The latter type is called a disturbance input.

Identified relations are marked in the block diagram by noting the cause and the
response in terms of physical variables and noting nominally the functional rela-

Cause

u(t) ---.I

Input
Excitation

System

Effect

Output
Response

vet)

Fig. 1.1. Graphical symbol of the basic system (system functional block diagram)
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tionship between input and output. In this way, the functional block diagram for a
specific system will be formed .

For example, if "input voltage" and "motor shaft speed" are noted at the action
line entering and leaving the box respectively, and furthermore "speed control
drive system" is noted on the inside of the box, Fig. I.I may represent the system
functional block of the referred DC motor.

1.2
General Classification of Dynamic System Variables

The interaction between a system functional block and its environment or between
functional subsystems happens by related signals. They will be identified as input
and output signals by measurements at terminal points. Applied to systems or their
components these quantities represent the system variables.

Any general discussion of system analysis procedure requires the adoption of
names for the different types of variables and for the general types of elements. A
first systematic classification of physical quantities was introduced by A. Som­
merfeld. [8]. This fundamental statements were taken up and developed by A. G. J.
MacFarlane, [9], in his definition of dynamic system variables. The physical
quantities are found to be expediently classified in terms of both spatial relation­
ships and local energy state.

1.2.1
Classification in Terms of Spatial Relationships

The physical variables which determine the flow of energy in the dynamic system
differ in the way they are related in physical space.

p- Variables (I-point or through variables). The fundamental physical quantities
of force, momentum, charge, current , and entropy are said to be J-point variables
since their specification (or ideal measurement) at a given point in space involves
only that single point in space. To identify this type of spatially intensive vari­
ables , they will be termed pervariables, abbreviated P-variables. Spatial-intensive
variables are often termed through variables since certain variables are propagated
through the measuring instruments normally used for their measurement. For ex­
ample, force is propagated through a spring balance, current through an ampere­
meter.

T-Variables (2-point or across variables). Variables such as displacement, veloc­
ity, temperature, and voltage are said to be 2-point variables since their specifica­
tion (or ideal measurement) involves two points in space. In most cases one of the
two points involved is a reference point. To identify this type of spatially exten­
sive variables, they will be termed transvariables, abbreviated T-variables . Spa­
tially extensive variables are often termed across variables since they are propa­
gated through an ideal measuring instrument across the two points in space. For
example, velocity measurement is performed on two specific points between
physical object and inertial reference system .
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Classification of Dynamic Model Components
Each component of a dynamic system model may be considered as representing a
relationship between pairs of measurements performed on the physical system . In
all cases one of the measurements is of a T-variable and the other is of a P­
variable. Physical reasoning shows that all the objects of which dynamic system
models are composed involve a measured or defined relationship between one T­
and one P-variable . For example, a spring is defined in terms of a relationship
between the pervariable force and the transvariable displacement. This relation­
ship is called the spring characteristic.

The objects of dynamic system models are not usually directly related to meas­
urements on distinct physical objects, as may be the case for simple physical sys­
tems, e. g., arrangements consisting of springs and rigid bodies. However, the
overall dynamic behaviour of the complex physical object, satisfactorily repre­
sented by the complete dynamic system model, is based on concepts ultimately
derived from measurements. They will be performed on distinct physical objects
at pairs of points in space.

The types of dynamic variables to be used for systems modelling also allow
storage elements to be classified as T- and P-storage elements.

Translational mechanical system variables. Mechanical systems involve two
distinct types of state . Isolated physical objects remain in a state of uniform trans­
lational motion. This tendency is attributed to a property of matter termed inertia.

Physical objects return to a given configuration after being deformed by an
acting force. This tendency is attributed to a property of materials termed elastic­
ity.

The quantitative measure of the inertia of an object is its mass, that of the elas­
ticity of a given object configuration is its stiffness . The first translational state
will be termed the kinetic type, the second one represents the static type.

Change ofmechanical state. Force can be defined in terms of measurements of
changes in translational state . The force exerted on an isolated body is propor­
tional to the resultant acceleration of the body. The constant relating force and
acceleration is the mass of the body. The force on a constrained body is a function
of the resultant deformation. In general, the relationship between applied force and
resultant displacement for a constrained body must be determined, by measure­
ment or calculation, for each relevant configuration. Such a relationship will be
termed a stiffness characteristic.

Relationships between mechanical system variables will be derived from a
change in translational mechanical state. A change of state includes the incre­
mental work done as well as the instantaneous power.

The symmetrical set of relationships between the four translational mechanical
system variables is shown in Fig. 1.2.

1.2.2
Classification in Terms of Local Energy State

For systems of all types the description of dynamic behaviour requires the use of
four distinct types of physical variable. Both the terms for these types and the gen­
eral types of storage element have to be defined. For the translational mechanical
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Fig. 1.2. Relationships between translational mechanical systems variables by MacFarlane [9]

system the four variables are:
- displacement, momentum, force and velocity.

The spatially related distinction of dynamic variables between P- and T-variables
will be completed by classification of variables related to energy storage and flow.
This may be provided by introducing the terms quantity, [8], or state [9], and in­
tensity, [8], or rate, [9].

State Variables (quantity or energy variables). Variables such as displacement
and momentum in the translational mechanical case are termed quantity or state
variables. State variables are direct measures or quantities of stored system en­
ergy. Alternatively the term energy variable is convenient to system analysis.

Rate Variables (intensity or power variables). Variables such as force and veloc­
ity in the translational mechanical case are termed intensity or rate variables.
Their product gives the rate at which work is done on a dynamic object or implies
the intensity of energy flowing . Alternatively the term power variable is conven­
ient to system analysis.

Rate variables for storage elements are the time rate of change of the storage
element state variable :

i- [state (or energy) variable] =rate (or power) variable.
dt

This provides the corresponding relationships between mechanical quantities,
such as momentum and force or displacement and velocity:

dp =F and ds =v
dt dt
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General Classification of Dynamic System Variables
For a given type of system, the physical kind of objects and signals suffices to
classify the variables as rate and state variables. Since there is always one P­
variable and one T-variable in the pair of state and also of rate variables, the fun­
damental types of physical variable used in the analysis of dynamic systems may
be classified and marked by general symbols as:

T-variable state: A-
T-variable rate: a
P-variable state: a
P-variable rate: 1".

To describe the interaction of components by their intensity of energy flowing the
preferably used terms for spatially corresponding rates or power variables are:

effort variable (or across power variable) : a
flow variable (or through power variable) : r:

In the case of translational mechanical variables the variables are classified and
termed as:

T-variable state (or across energy variable):
T-variable rate (or effort variable) :
P-variable state (or through energy variable):
P-variable rate (or flow variable) :

displacement s
velocity u
momentump
force F.

A dynamic model system storage element for which a T-variable state is a direct
measure of stored energy will be termed T-storage element, and a dynamic model
system storage element for which a P-variable state is a direct measure of stored
energy will be termed a P-storage element .

With reference to the two different states of the physical system and the distinct
types of energy, the storage elements for the mechanical case are termed:

T-storage element (or potential energy storage element) : spring
P-storage element (or kinetic energy storage element) : mass

In general, the incremental work done by change of state as well as the resulting
instantaneous power are

8(work) = (P-variable rate) x 8(T-variable state)
and power = (P-variable rate) x (T-variable rate)

= flow variable x effort variable.
This provides the corresponding relationships between mechanical quantities as:

8W = F8s 8W = u8p

and P = Fu .
The relationships between the general dynamic system variables are summa­

rized in Fig. 1.3.
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Fig . 1.3. Relationships between general dynamic system variables by MacFarlane [9]
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(Model System)

Besides the abstract mathematical description of the input-output relations, the
relations between the system variables can be visualized by diagrams.

Figurative proceeding is more convenient to solve problems in device engi­
neering. However, simple design representations - called schematic diagrams ­
are helpful only for depicting methods of operation of the physical system. The
description of dynamic system behaviour is based on a model system which re­
quires specific types of diagram. Models for a structured system, especially for the
system components are restricted to defined types of element representing the ab­
stract objects of the model system. Contrary to schematic diagrams whose purpose
is solely descriptive systematically constructed diagrams are used for the analysis
procedure in systems engineering . An important part of systematic approach to the
design of complex systems is to express the system specifications in a form suit­
able for the following mathematical parts of the problem.

Significant types of systematic diagram preferably used in electrical engineer­
ing are treated in the following sections with regard to mechanical model systems .

2.1
Block-diagram and Signal-flow-diagram Representation

In portraying systems block diagrams have proven to be an effective tool which is
not only useful in visualizing the structure of the model but also helpful in the
communication between builders and users of models.

Block Diagram Definitions
This type of systematic diagram represents the functional relationships in terms of
which an observer may describe the physical system behaviour. That equals the
representation of the system behaviour in terms of the spatial flow of signals.

The signals are indicated by orientation arrows on the line segments, and the
interconnections are displayed by blocks or boxes, in the case of unspecified or
unknown relations by empty or "black" boxes, [5] to [7].

Known relations are marked either by denoting the functional relationship be­
tween input and output quantities or by depicting a block symbol or a picture in
the box, here called the functional block, Fig. 2.1.

Key element of the theory of dynamic systems is the transmission system that
relates uniquely the output to the input. Single-variable systems relate one output
signal to one input signal (one-input, one-output systems).
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VOw)
GOw)=1 .V T

VOw) V(s) V V(s)
G(s)= 1+Ts+Jw

Frequency-response function Transfer function

V -1*1 V u(t) -1k=1 v(t)
• •

Characteristic curve Unit step response

Fig. 2.1. Basic system with notation of the transmission behaviour (functional block)

A block may represent a linear or a nonlinear element. Obviously the block
diagram is an oriented diagram which defines the cause-and-effect relation be­
tween variables in its causal sense. It consists of 4 basic elements: (functional)
block, line segment, pickoff point and summing node.

The functional block diagram of a system is adequate for the identification of
quantities associated with subsystems . The interconnection of components will be
found by following the paths of signal flow along the connecting lines. However,
for the representation of a system in terms of interconnected subsystems, more
detailed developments of block diagrams are required. In addition, the mathemati­
cal operations relating the inputs and outputs of the subsystems must be indicated
on the figurations of systematic diagrams.

The simulation block diagram represents operations pictorially by notations in
the blocks. Upgraded to a computerized model it is convenient for elementary
operations on time domain signals, such as multiplication by a constant or by a
time-varying coefficient , differentiation, and integration .

The transfer function block diagram offers an efficient means for using dia­
grams in system analysis . This computerized model makes use of the transforms
of input and output signals on the corresponding functional block. The transfer
function is indicated inside the block, here called transfer function block.

2.1.1
Transfer Function Block Diagram

One of the advantages of the transfer function representation is the simplicity of
the algebraic relations between the subsystem or component transfer functions.
Thus, confining systems modelling to linear time-invariant behaviour the overall
system transfer function can be easily obtained.

The resulting algebraic relationships between (the transforms of) the variables ,
especially at a summing node and at a pickoff point, are illustrated in Fig. 2.2.
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Fig. 2.2. Block diagrams of fundamental configurations (basic structures of control systems).
a Cascade; b parallel; c feedback loop

Overall system transfer functions G(s)
G (s ) = G1(s) . G2(s) (2 .1)

G(s) = G1(s) +G2(s) (2.2)

G(s) - G1(s) (23)
- 1<+lG1(s ) G2(s ) .

For two compo nents whi ch are co nnec ted in cascade or tandem, Fig. 2.2a, the
output VI of the first block is the input U2 to the second block . Th e transfer fun c­
tion of the cascade is equal to the product of the indivi dual transfer functions, Eq.
(2 .1).
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For two components in parallel whose inputs V" V2 branching out at pickoff
point are the same and whose outputs V" V2 joining at summing node are added ,
Fig . 2.2b , the transfer funct ion of the combined system is equal to the sum of the
individual transfer functions, Eq . (2.2) .

For two components connected in a circuit or a feedback loop, Fig. 2.2c, the
loop transfer function can be derived from cascade and parallel operations.

Using a summer to join the inputs V, V2 the input line segments are indicated by
a plus sign. Therefore the product of the individual transfer function s is subtracted
from I in the denominator of the system transfer function , Eq. (2.3).

2.1.2
Control System Structure

The fundamental configurations of a block diagram even serve as basic structures
of control systems. As mentioned before, a control system is arranged to regulate
or adjust the signal flow in some desired manner. To distinguish a system that acts
without outside intervention from a manually controlled system sometimes the
term automatic control system is used that can be either an open or a closed loop .

Open-loop System. The type of diagram dep icted in Fig. 2.2a represents the basic
structure of an open -loop control sys tem. The desired output V (reference vari­
able ) acts as input VI on the controller and the output VI of the controller acts as
input V2 on the plant. The latter component defines the object to be controlled.

Using feedforward blocks in series , the output does not affect the input. There­
fore the transfer function of the cascade corresponds to that one related to an
open -loop control system, Eq. (2.1).

The desired output of the plant V remains the same irrespective of the actual
output V, so that open-loop controllers are limited to situations where events are
quite predictable. Howe ver, this type of controller is not satisfactory for interac­
tion in proce sses with occurring disturbances. This occurrence is marked by add­
ing a line segment for the disturbance input Z on the plant block .

Closed-loop System. The diagram modified to a general single -loop system in Fig.
2.2c represents the basic structure of a closed-loop or feedback control system.
This type of control system uses measurements of the output to modify the sys­
tem's action in order to achieve the intended goal. Therefore a sensor forming the
feedback block is added to the controller which detects the error between the ac­
tual output V (controlled variable X) and the desired output V. This control opera­
tion implies the comparison of two converted signal s of the same type , i.e., the
transduced actual output (feedback signal R) must be subtracted from the desired
output V (reference variable W; here W = U), to form the actuating (error) signal
(E) being subsequently transduced to the input of the plant VI (manipulated vari­
able Y). Thus, by error detection the input on the plant is manipulated so that the
error caused by the disturbance input Z is reduced. To perform the connection
variables by subtraction instead of addition the summer has to be replaced by a
node called comparator which represents a closed-loop controller in its simplest
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form. Sometimes the output transducer (sensor) is not of interest. By eliminating
the feedback block the control system may be simplified to a single-loop system
with unity feedback .

Using a comparator to joi n the inputs W, R one of the input line segments
(feedbac k input) is indica ted by a minus sign. The addition of feedback input R
and forward input W would create a positive feedbac k system which acts by in­
creasi ng the deviation between desired and actual output (rege nerative feedback).
Control operation requires diminishing of the output deviation (dege nerative
feedback), hence control design presupposes a system with negative feedback .
Therefo re the product of the individual transfer functions is added to I in the de­
nominator of the system transfer function related to closed-loop co ntrol system
(negative nonun ity feedback system), Eq. (2.3).

2.1.3
Control System Design. Fundamental Aspects

The closed-loop system is much superior to the open-loop system in that it re­
sponds satisfactorily to changes in commands and maintains syste m performance
in the presence of disturbances.

Performance Requirements. The robustness and the linearity of the origi nal sys­
tem are improve d because feedback (or parallel) compensation reduces the pa­
rameter sensitivity and extends the linear range of nonlinear eleme nt charac teris­
tics.

On the other hand the introduction of a feedback loop around a stable system
has the disadvantage that the compensated system can potentially become unsta­
ble.

To analyse the performance of control systems with higher specifications, more
detailed mode ls and analytical techniques for determining the stability must be
introduced.

The general function of the controller is to keep the controlle d variable near its
desired value whenever a change in command or a disturbance is caused . To pro­
duce the control signal by acting on the error signal control logic elements must
be arranged for following up a specifically implemented algorithm. By this algo­
rithm describing the control law specifications are layed down to gove rn the pro­
cess. Specific control objectives, such as

- minimize the rise time and/or the settling time,
- minim ize the transient error and/or the steady-state error

are explicit statements for control design to evaluate the system performance in
terms of speed and accuracy.

To realize specific control laws in automa tic control systems, it will be neces­
sary either to generate the reference variable W by transducing the com mand input
U as well as to form the manipulated variable Y by affecting the error varia ble E.
Thu s, the design of a controller generally requ ires that the error detector will be
completed by input eleme nts and control logic elements C'brain" of the system).
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Hence the controller before acting on the plant interacts with the actuator ("mus­
cle" of the system) which finally produces the driving signal Y. Both the actuator
containing final control elements and the output transducer consisting of feedback
elements are essential implements at the interface coupling the control equipment
and the process, Fig. 2.3.

Block diagram algebra can be used for the evaluation of control system's per­
formance by deriving the error variable E and its interacting variables from stan­
dard diagram, Fig. 2.3.
Assuming the simplifications

Ac(s) = Gcl(s) = I U = W, E = YR

Gc(s) = Gc2(s)
the input-output relationships of standard types of control systems are stated
Open-loop system H(s) == 0

If there is noise (or a disturbance) applied to the plant the plant output will be
X = Gp(s)(Y + Z) = Gp(s)Gc(s)W + Gp(s)Z (2.4)

such that the output deviation (actuating difference or error) is

~ X = Gp(s)Z (2.5)

i.e., noise affects directly the output.
Closed-loop system H(s) > 0

Introducing a feedback loop plant output will be

X = Gp(s)(Y + Z) = Gp(s) [ Gc(s)(W - H(s)X) + Z) (2.6)

Error
detector

I
I Final
icontrol elements
. _. _ ._. J

Feedback I
elements IL ._ ._ ._ .

I
I

. elem. i
L._ ._ ._ .

X=V

Output transducer (Sensor)

Fig. 2.3. Block diagram of control system configuration (standard diagram of feedback control
systems)
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so that

x = Gc(s) Gp(s) W + Gp(S) Z
1+ H(s) Gc(s) Gp(s) 1+ H(s) Gc(s) Gp(s)

The effect of change in command and of occuring disturbance on controlling is
indicated either by
the primary or reference transfer function G,(s)

X Gc(s)Gp(s)
W 1+ H(s)Gc(s)Gp(s) = GrCs)

or by the disturbance transfer function Gis)

X Gp(s)
------"---- - G (s)

Z 1+ H(s)Gc(s)Gp(s) - d

The effect on the plant output due to noise is described by the disturbance transfer
function Gis) , Eq. (2.9). Hence it follows the remaining output deviation

I

s = !i.G/ G '" dG / G = dG Gp
!i.Gp / Gp dGp / Gp dGp G

For the open-loop system the transfer behaviour is given by feedforward blocks in
series G(s) = GcCs)Gp(s), Eq. (2.1); therefore

GcdG p c;
s= --=1

dGp GcG p

However, for the closed-loop system the transfer behaviour is determined by a
feedback loop as described in the reference transfer function G,(s), Eq. (2.8), so
that

GcdG p Gp(l + HGcG p) I
S = (2.13) .

(I + HG cG p )2 dG p GcG p 1+ HGcG p

Similar to the susceptibility to noise, in a closed-loop system , the sensivity to sys­
tem parameter changes can be made arbitrarily small by increasing the overall
gain of the control system HGc'

Performance of Position Control. If a load with inertia J is to be positioned at

some desired angle ~ by means of the mentioned de-motor the taken up angle
position e equals not necessarily the desired value e, (command input U). This
may result from the disturbance (disturbance input Z) of different origin, acting as
a disturbance torque Td on the load. For this reason the feedback loop will be
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closed by a feedback potentiometer (feedback element) measuring the actual po­
sition (controlled variable X) and transducing it in a proportional wiper voltage Va'
A command potentiometer (input element) generates a voltage V, proportional to

the desired angle ~. The measured voltage Va (feedback signal R) and the gener­

ated voltage V, (reference variable W) are compared by a differential amplifier

resulting in the error voltage U, (error variable E) being a nonzero voltage when e
does not equal e,. The differential amplifier (error detector) will be completed by
a power amplifier (control logic element) .

Command potentiometer and amplifier together are forming the operating unity
(controller) which produces the control signal U, (controller output variable YR)

affecting the DC motor (actuator). Its response is the motor torque T which repre­
sents the actuating signal (manipulated variable Y) to drive the load (plant ele­
ments). The positioning drive acts by closed loop in the sense to diminish the error
of angle position.

Thus, noting the related physical variables at the line segments, Fig . 2.3 may
represent the block diagram for a specific system, e.g., for an electromechanical
servomechanism acting as a position control system .

To describe the overall behaviour of the electromechanical system an adapted
control logic element must be supposed with an implemented algorithm referring
to a specific control law. As a basis of many control systems the proportional
control may be considered. Block diagrams for controllers are drawn in terms of
the deviations from a zero-error equilibrium condition. Applying this convention
to the general terminology in Fig . 2.3, the proportional control is described by

YR = KpE (2.14).

This relation denotes an algorithm where the change in the control signal YR is
proportional to the error signal E, Kp is the proportional gain .

Assuming the differential and the power amplifier linear their gains are com­
bined into one , denoted Kp• The system is thus seen to have proportional control in
which the motor voltage U, is proportional to the difference between the com­
mand voltage V, and the feedback voltage Va of the potentiometers

U; = Kp (V r - VJ = KpVe (2.15).

According to the block diagram, Fig . 2.3, the interconnection of physical vari­
ables involves the relationships along the controller

V, / e, = Ac(s) = K) ; U; / e = H(s) = K2

with the amplifier transfer function
u, /u, = Gc(s) = Kp

and the motor transfer function
T / U, =Gm(s) =KT / R.

The relationship around the plant is given by the plant transfer function
e 1

T+TcJ =Gp(s)= s(Js+c) (2.16)

which identifies the controlled load as a neutrally stable second-order plant con-
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taining a moment of inertia J and a viscous damping c as plant elements. For a
meaningful error signal U; to be generated the simplifications are introduced:

K, = K2 ; K = K\KpKT I R.

Hence it follows by Eqs. (2.8), (2.9) that the specified reference transfer function
e K

"2) 2 = GrCs) (2.17)
C/ r Js + cs + K

and the disturbance transfer function

e I G C ) (2.18)
Td Js 2 + cs + K = d S

describe the overall behaviour of the electromechanical system reacting upon a
change in command or disturbance input.

The performance of the proportional control of a second-order system can be
summarized as follows :

The closed-loop system is stable if J, c and K are positive. For no damping (c

= 0), the closed-loop system is neutrally stable.
A change in desired position can be simulated by a unit step for the command

input (9,. Using the corresponding transform of unit-step function e ,(s) = lis, and
applying the final value theorem to the transform of actual position, the steady­
state output is

ess•r = limsGrCs)l = KK = I (2.19) .
.I'~O s

The steady-state error signal, being the difference between original unit-step input
and steady-state output, is thus zero if the system is stable (c > 0, K> 0).

A sudden change in load torque also can be modelled by a unit step for the
disturbance input Td• Using the corresponding transform Tis) = lis the steady
state error signal due to a unit-step disturbance is

ess d = limsGdCs)l= KI (2.20).
, .I'~O s

This deviation can be reduced by choosing the overall gain K large .
Nevertheless, the steady -state error does not generally run up to zero for sec­

ond-order systems .
If the plant's transfer function were instead

Gp(s) = 2 I (2.21),
Js + cs + k

then a steady-state error of kl(k + K) would remain.
The transient behaviour is characterized by the damping ratio

c
r; = 2JJK

For slight damping, the response to a step input will be distinctly oscillatory
and the overshoot large, hence the transient error signal is running the risk to ex­
ceed the specified tolerance.

Thus, control system design implies alternative control laws for higher specifi­
cations to improve the system performance in terms of speed and accuracy - pos­
sibly being conflicting objectives - , without having to change the existent plant.
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Advanced Control Methods. The performance requirements and the expense of
modern systems can be quite high, so that an analytical approach is usual neces­
sary to design a control system with sufficient accuracy, speed, and stability char­
acteristics. For this problem the stated fundamental aspects concerning classical
control methods are rather incomplete, because there are many more topics that
should be covered to be complete. A lot of them are simply powerful techniques
for quantifying and visualizing performance and stability of closed-loop control
systems as a function of feedback controlIer gains. It would go far beyond the
scope of this review chapter to reiterate them here. Instead, the reader being inter­
ested in control theory is referred to more specialized texts, [2] to [4].

By example of an electromechanical system the efficiency of feedback com­
pensation could be demonstrated by reducing system sensitivity and enhancing
system performance. However, the main purpose dating from the stated funda­
mental aspects is to show the role of modelIing for a successful design of control
systems by using diagrams, especialIy to point out the efficiency of transfer func­
tion block diagrams in system analysis.

2.1.4
Signal Flow Graphs. Reduction of the Diagram

Transfer function block diagrams possibly representing an extensive system
structure may be reduced by systematicalIy applying interconnection conventions
of variables . Some intermediate variables may disappear in the simplification pro­
cess .

Block Diagram Reduction
An elementary example of simplification is given by the block diagrams of fun­
damental configurations, Fig. 2.2. The two blocks representing differently con­
nected components may be replaced by only one equivalent block. The original
system structure is noted by depicting the overalI system transfer function in the
block reflecting the related interconnection of subsystems . Thus, Eqs . (2.1) to
(2.3), may be interpreted as common reduction formulas for cascaded, paralIel
elements, and for feedback loops, in case to be completed by formulas for relo­
cating a summer or a takeoff point. A summary of aiding tools is given in litera­
ture by block-diagram-reduction (transformation) tables contrasting original and
reduced (equivalent) configurations [3], [4].

Basic reduction rules simply require that the relationships between the trans­
formed variables are maintained. Hence, any two diagram arrangements are
equivalent if they correctly express the algebraic relations defined by component
transfer functions and have the same input and output variables .

Signal-flow-graph (SFG) Models
That type of systematic diagram represents an alternative method for determining
the relationship between system variables . It is the matter of a graphical represen­
tation in which variables are represented as nodes (or vertices) noted by dots and
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the operations on these variables are represented by branches noted by directed
line segments between the dots. Each branch is an unidirectional path of signals
and is labelled with the input-output-relationship. This contrasts with the block
diagram 's representation of variables as lines and operations as blocks. Because of
this difference , that outlined type of diagram is a simplified notation for block
diagrams . Signal flow graphs are attractive since block-diagram-reduction proce­
dure may be difficult for complex systems with many loops.

An important convention to note by using SFG is that a node is summing the
signals of all incoming branches and transmits this sum (the value of the variable)
to all outgoing branches. The oriented line segments show the relationship be­
tween the variables whose nodes are connected by the branch, with the arrow in­
dicating the direction of causality. Subtraction is indicated by a negative sign with
the operation denoted by the proper line segment. Corresponding to the block dia­
grams of Fig. 2.2, representing fundamental configurations, the equivalent signal
flow graphs are shown in Fig. 2.4.

Finally it has to be mentioned that Mason 's Circuit Rule for SFG provides the
necessary relations between system variables without any required manipulation
or reduction . By applying some special definitions this circuit rule must give the
correct value for the relationship between nodes. It is invariant under the removal
of an intermediate node, that is it gives the same answer for the transfer function
when applied to the original signal flow graph and to the reduced graph obtained
by removal of an intermediate node. Thus, the required overall system transfer
function may be written down by inspection even when the number of loops or
forward paths in diagram is large, [3], [4].

U 1 U1 G1 V1=U2 G2 V2 1 V

a ~---o ~ 0 • 0 • 0

G1

U 1 u,=~ :=:>+V, 1 V

b 0 ~ • 0

G2

U 1 U1 G1 V1=U2 1 V

C
0 • ~ :~ • 0

W X=V

(-)G2

Fig. 2.4. Signal flow graphs (SFG) of fundamental configurations. a Cascade ; b parallel ;
c feedback loop
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2.2
Two-part-diagram Representation

As a particular line of general network theory the theory of linear n-port networks,
originally confined to four-pole theory , is an approved method for analysing elec­
trical circuits [10].

The conception of four-pole or four-terminal networks bases on describing the
interconnections between the terminals of a single entity ("box") encompassing a
rather complicated arrangement of components. Overall relationships are defined
by input and output variables obtainable by measurements at the four accessible
termin als of the "box" (terminal voltages and currents) without being acquainted
with the details of component circuits inside the "box". By combining two single
terminals to a terminal pair the interconnection between four variables implies the
statement that four poles are networks for transmission ofpower through from an
input-terminal pair to an output -terminal pair. Therefore, it is convenient to prefer
the term two port instead of four pole characterizing by this the essential attribute
of a network being connected to external circuits by two pairs of terminals form­
ing two ports.

The results of two-port theory can be used for systems modelling of different
engineering devices transmitting energy , (power circuits), e.g., electromechanical
or mechanical systems, if their objects are defined by an input port and an output
port.

2.2.1
Generic Two Port. Two-terminal-pair Network

In the beginning the variables at single terminal pairs must be considered for de­
termining the characteristics of a two port.

A gener ic two-port network is supposed to be passive , hence it does not dispose
of effort or flow variable sources . First direction arrows of currents and voltages
are chosen unsymmetrically at input and output port. These conventional refer­
ence directions (chain arrow directions) are transmitted subsequently to opposite
terminals in generalized variable notation, Fig. 2.5, according to 1.2.2.

A two-terminal-pair network consists of an interconnected set of terminal pairs,
each of which represents a known relationship between a pair of rate variables
(intensity or power variables). T- and P-variable rates, in preferably used terms

Fig. 2.5. Graphical symbol of the basic 2-port with subsequent referen ce direction s (generic
two port)
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effort variables a and flow variables r quantify the (transforms of the) received or
supplied performance at opposite terminals, namely the input power al'l and the
output power a2 ' 2' The variable relationship of the general two port is described
by a pair of linear equations, where input quantities are represented as functions of
the output quantities.
4-pole equations in transmission form (chain form)

al = AlJa2 + A 12'2

'I = A 21a2 + A 22'2

or, in matrix notation

[;11]
= [~~~ :~:] [;:] (2.23b)
'-v--'

=A
where A is the transmission or chain matrix of the two-terminal-pair with the 2­
port parameters A;k (i,k = 1,2) as its 4 elements

A = [~k] = [All A12
] (2.24)

A2) A22

These 2-port parameters (transmission or chain parameters) can be determined by
physical equations or measurements at the terminal pairs on the following condi­
tions ofconstraint , Fig. 2.6 .
If, for example, a =U, ,= 1 (electrical system) the transmission parameters will
be interpreted physically as:

All = (VJ!V2 )' 2; 0 : the open-circuit voltage ratio

A21 = (II/V2 )' 2; 0 : the open-circuit transfer admittance

Al 2 = (VI112)u2
; 0 : the short-circuit transfer impedance

A22 = (III 12 ) u
2

; 0 : the short-circuit current ratio

Since the elements of the two port are linear and since only the zero-state re­
sponses are considered (all initial conditions zero), the superposition theorem

Secondary
open-circuit

1'2=0

Fig. 2.6. 2-port under output-terminal constraints

Secondary
short-circuit

a2=O
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guarantees that each input variable is the sum of contributions due to the output
variables independently acting alone.
Transmission (chain) matrix of the general 4-pole with the 2-port parameters de­
termined from restrained-state operations :

A=[~~I'2=0 ~~la2=0]'I I 'II (2.25)

a2 '2=0 '2 a 2=0

Output quantities as functions of the input quantities
4-pole equations of the inverse form in matrix notation

[a2 ]=[B11 B12][al]
'2 B21 B22 'I

'---v----'=B
Computation of inverse transmission matrix B by inversion of A

B=[Be]=A-1=_I_[A22 -Au]
m detA -A21 All

2.2.2
Connection of Two Ports. Fundamental Configurations

(2.26)

(2.27)

(2.28)

The competent significancy of two-port theory derives from its facilities to con­
nect several two ports. It is useful in analysis problems to be able to express the
parameters of the resultant two-terminal-pair network in terms of those character­
izing the individual or component two-terminal pairs.

One of the advantages of the two-port representation is the simplicity of the al­
gebraic relations between the individual 4-pole equations by using matrix nota­
tion. Thus, confin ing systems modelling to linear two-port networks the overall 4­
pole matrix equations can easily be obtained .

The resulting algebraic relationships between (the transforms of) the variables,
especially the connection rules at the junctions, are illustrated in Fig. 2.7.

Cascade Connection. For several component 4-poles which are connected in cas­
cade or tandem , Fig. 2.7a, the output from any network is precisely the input of
the next one.

') =') ; '2 =,)' ='2 ; .. . ; ,~O) ='0+1

a -a' .a' - a"-a ' .a(o) - a) - ), 2 - ) - 2 "'" 2 - 0 +)

4-pole equations of the transmission form in matrix notation

[::]-[~:l: ~~][~:;: ~:~:lt:::]
=A

where A is the transmission or chain matrix of the composite 2-port.
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it i z r, in 'l'n+l

a1.:J A,(s) tS A 2(s) tE A3(s) r:~El An(s) t.an+'
a

it iO i zt-. .-

aj 1a,

b

iO i z° i zit t-. .-

aj 1a,

C

Fig. 2.7. 2-ports of fundamental connections (basic connection types of 4-poles) . a Cascade;
b series; c parallel

The overall matrix of a cascade is equal to the multiple product of all transmission
matrices of the components arranged in the same sequence as the respective net­
works to which they pertain, Eq . (2.29) .

n

A = Al · A2· ·· Ah · · · ~ = I1Ah (2 .29)
h =1

Because most of circuits in electrical networks or communication theory are
composed in sequential structure the 4-pole cascade connection is the most im­
portant of all interconnections of component networks. Due to the convention of
subsequent reference directions instead of symmetrical ones the cascade connec­
tion involves that the output flow variable at the preceding two port corresponds
in amount and direction to the input flow variable at the adjoining two port.

Series Connection. For two component 4-poles which are connected in series,
Fig . 2.7b, the parameters for the resultant 2-port network can be found by adding
the corresponding equations for the separate components.
Flow variables are identical

'I =,; = 'i'
'2 ='2='i'

Effort variables addal =ai +ai'
a2 =a2 +ai'
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4-pole equations in impedance form

[::J = [~:: ~::] [::J
'--v--'

=z
where Z is the impedance or Z-matrix of the composite 2-port.
The component impedance (or resistance) matrices of individual 4-poles add to
the overall impedance matrix :

Z=Z( +Z2 (2.31)

Parallel Connection. For two component 4-poles which are connected in parallel,
Fig. 2.7c, the parameters for the resultant 2-port network can also be found by
addition.
Flow variables add

'I = ,j + ,i'
'2 = '2 + '2'

Effort variables are identical
at=ai=ai'

a2=a2=a2'
4-pole equations in admittance form

[:J=[~:~:][:J
'-v------'

=y
where Y is the admittance or Y-matrix of the composite 2-port.

The component admittance (or conductance) matrices of individual 4-poles add
to the overall admittance matrix:

(2.33)

Mixed Connections. Further interconnections of two component 4-poles are given
by combining the input terminals in series whereas the output terminals are joined
in parallel, at last by the inverted combination, Fig. 2.8.

First one is the series-parallel connection, Fig. 2.8a, with the 4-pole equation in
matrix notation

(2.34)

'--.r---'
=H

where the series-parallel matrices (component hybrid matrices) of the individual
4-poles add to the hybrid or H-matrix of the composite 2-port

H = HI + H2 (2.35)

Latter one is the parallel-series connection, Fig. 2.8b, with the 4-pole equation in
matrix notation
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it i 2-. .-

aj la,

it i' i 2t

:1
.-1a,

Fig. 2.8. Two ports of fundamental connections . a Series - parallel ; b parallel-series

(2.36)

'-or-----'
=G

where the parallel-series matrices (component inverse hybrid matrices) of the in­
dividual 4-poles add to the inverse hybrid or G-matrix of the composite 2-port

G = G1 + G2 = H-1 (2.37)

2.2.3
Mechanical Two Ports

The 2-port parameter method of analysing vibration problems embodies the use of
a pair of linear equations to relate the mechanical system variables of the output to
the input of a general linear elastic system, [II], Fig. 2.9.

a

b
Fig. 2.9. Basic 2-port of a general linear elastic system. a Generic mechanical two port;
b simplified diagram by Molloy [II)
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The elastic system may be a combination of linear, lumped mechanical ele­
ments such as masses, springs and dampers . It also can be a combination of linear,
distributed mechanical components, such as beams, plates, diaphragms, etc . The
elastic system must have two identifiable connection points (l) and (2) which are
called the input and output points, Fig. 2.9b.

Electromechanical Analogies. Supposing a translational mechanical system the
instantaneous power of state change under transmitting through the single entity
"2-port" is described by the appropriate rate (or power) variables force F and ve­
locity v, as shown in Fig. 1.2.

Nevertheless, by denoting the terminal pairs as shown in Fig. 2.9a, the defini­
tion of T- and P-variables is inverse to the before presented general classification
of dynamic system variables . Provided that the reverse relationship

effort variable a =F force
flow variable t: =v velocity

is applied to define the pair of rate variables for the translational mechanical case
a two-port-network modelling is pointed out which prefers the "classical" type of
the two possible electromechanical analogies.

By this type called dual or force-to-voltage analogy and being historically
founded on mass-inductance dualogue (or impedance analogue) the physical vari­
ables are related in the "linear" correspondence

force B voltage ; mass B inductance
velocity B current; spring B capacitance.

Though, this relationship ranks as the naturally perceived one it provides a dif­
ference in the topology of related mechanical and electrical networks. To remove
this disadvantage alternatively the "new" type called true-connected or
force-to-current analogy was introduced (Hahnle [12], Firestone [13]), and de­
finitively treated (Trent [14]). By that type basing on mass-capacitance analogue
(or mobility analogue) the physical variables are related in the "reciprocal" corre­
spondence

force B current; mass B capacitance
velocity B voltage; spring B inductance.

While it is pointless to discuss which analogy is "correct", as both are equally
valid when they exist, the mass-capacitance analogy has considerable advantages.
These chiefly stem from the fact that while the mass-capacitance analogue of a
nonplanar electrical or mechanical system always can be constructed, the mass­
inductance analogue of such a system does not exist [15].

The input force and velocity are produced by connection of point (l) to that
portion of the complete mechanical system which precedes it. At the output point
(2) there exists a force (F 2) and a velocity (v2) which result from the application of
(FI ) and (VI) at input point (l) and the reaction of the portion of the mechanical
system following the 2-port. The positive direction of forces and velocities are
chosen to coincide with the direction of energy flow from the vibrating source .

Phasor Performance Equations. 4-pole equations in transmission form (chain
form) representing the performance equations of the translational mechanical
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(2.38a)

system are given by

FI = AIlFz + Al zvz

VI = AZ1Fz + Anvz

or, in matrix notation

[ F1 ] _ [AII AI2][Fz ] (2.3 8b)
~ - AZ1 An V z

'----,,-----'

=A
where A is the transmission or chain matrix of the mechanical two-termi nal pair
with the 2-por t parameters A

ik
(i.k = 1,2) as its 4 elements.

Confini ng oneself to harmonic excitations and responses and adopti ng the con­
ventiona l complex number represe ntation the components of the force-velocity ­
vectors and the 2-port parameters are pointed out in terms of comp lex quantities,
so that Ep 12 ; are phasors, whereas Aik in general are complex system parameters
formed by the ratios of two phasors according to the indicated termin als. The
physical interpretation of these ratios, called complexors, depends upon the types
of related physical variab les in conformity with the chosen force-to-vo ltage or
impeda nce analogy. Thus, the phasor ratios can be determined by inspection, Fig.
2.10.

Tra nsposing the 4-pole equa tions, Eq. (2.38a), it is readily see n, that All and A 22

are a non-dimensional ratio either of forces or of velocities, defining a transmissi­
bility. A I 2 is the ratio of the phasors force to velocity which defines a mechanical

Mechanical
2-port parameters
(transmissionor
chainparameters)

Output port
termination
constraints

blocked:

F, I FA,,=-=- =T'2
F2 ~= o

free:

F,IA'2= -=- =Z'2
V2 5=0-

blocked:

~,= ~ I =Y,2
-.l ~= o

free:

~= v, I =T,~
yg cg=o -

Physical interpretation
ofcomplex system
parameters (phasor ratios)

Force transmissibility

Transfer (mechanical)
impedance
(free impedance)

Transfer (mechanical)
mobility
(blocked mobility)

Velocity transmissibility

Fig. 2.10. Mechanical 2-port parameters from output-terminal constraints
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impedance lIz' AZI is expressed in terms of the reciprocal of the mentioned dy­
namic characteristic and defines a (mechanical) mobility 1 12,

The general procedure for determining 2-port parameters of a system requires
several analytical steps, such as setting up the performance equations, subjecting
them to boundary conditions, solving them and casting the solutions in Eq. (2.38).
The 2-port parameters of a structure also can be measured experimentally by ap­
plying output-terminal constraints for disconnecting definably the supply of me­
chanical energy.

Let the measurement point 2 on the structure be blocked, i.e. constrained to
have zero velocity, Q z =O. Then, solving Eq. (2.38) for this boundary condition

AII is defined in terms of the force transmissibility I~2 and AZI is determined by the

transfer (mechanical) mobility 112, both between point I and point 2 being
blocked.

Let the measurement point 2 on the structure be allowed to respond freely
without any (motion) constraint, Ez =O. Then, solving Eq. (2.38) for that boundary
condition A IZ is equal to the transfer (mechanical) impedance liz and Azz is de-

fined in terms of the velocity transmissibility C2 ' both between point I and point 2

being free, Fig. 2.9.

2.2.4
Fundamental Mechanical Elements. Fundamental Configurations

Instead of implementing the general procedure for determining 2-port parameters
of a complete two-port network model representing complex mechanical objects
(structures) it is more convenient to consider it as a two-terminal-pair network
resulting from the connection of simpler component two-terminals pairs. Thus, it
is useful to determine the 2-port parameters of mechanical network components,
such as storage elements and dissipators (masses, springs and dampers) defining
linear element characteristics by fundamental physical laws. Suchlike deduced
elementary or degenerate 2-ports are composed of parameters, in particular re­
duced to real or imaginary system parameters. Subsequently the 2-port parameters
of composite 2-ports (structures) are computed with the aid of basic connection
types of 4-poles by applying connection rules at the input and output points of
linear elements.

Mechanical Elementary 2-ports
Confining oneself to translational mechanical systems the two-terminal pairs of
translational mechanical components are defined as follows, Fig. 2.11.

Spring. Potential energy storage element: linear time-invariant spring, Fig. 2.1la.
jw: differential operator, ljjw: integral operator

Force requirement (dynamic equilibrium)
F1 = F2 = F;
- - -

T-storage element law (Hooke's law)
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k

s,
~

r,

VI -----. ~ v2v=v,-v2
a ;;;;)77777 / 7/777/ 11

1 2
F,

~
F2

V

b

c

c

~~~
V, ~ v:v,:t2 ~ V2

/ 7777777 / / 1/ / 7777 / / )

Fig. 2.11. Basic 2-ports of linear time-invariant mechanical elements. a Spring; b mass;
c damper

force-motion performance equation

F= k(~ -2) = Ji...- v
-2 jm j m j m -

4-pole equations
Fj = 1. F2 + 0 -v 2

jm
VI = T F2 + I -V z

(2.39a )

(2.40)

(2.39b)

or, in matrix notation

[~]= [+ ~] [~~]
~

=Ak(jm)

where A. is the transmission matrix of the spring.
Basic 2-port determined by its impedance-analogous parameter:

A
21

is the inverse of the mechanical impedance of the spring Z., i.e., the mobility

of the spring , ~

_ jm _ !!. _ / _AZI -----1 Z k - Ykk Fs

with the elas tic (spring) constant or stiffn ess k.
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Mass. Kinetic energy storage element: time-invariant mass, Fig. 2.11b.
Motion require ment (geometric constraints)

VI = V2 =~

P-Storage element law (Newton's second law)
force-motion performance equation

Fm = Fj - F2 = mjmvl = mjm~

4-pole equations in matrix notation

[~]=[~ j~m] [~:]
'----v----'

=Am (j m)
where A mis the transmission matrix of the mass.
Basic 2-port determi ned by its impedance-analogous parameter:
AI2 is the mechanical impedance of the mass, Zm

. Fm
A12 = Jta m = V = Zm

with the mass (parameter) m.

Damper. Fluid friction dissipator: linear time -invariant damper, Fig. 2.11c.
Force requirement (dynamic equilibrium)

Fj=F2=Fd

Dissipator element law (linear viscous damping)
force-mo tion performance equation

Fd = C (VI - V2) = Cid

4-pole equations in matrix notation

[~] = [~ ~] [::]

(2.41)

(2.42)

(2.43)

'-----r--'
=Ac(jm)

where A c is the transmission matrix of the damper.
Basic 2-port determ ined by its impedance-analogous parameter:

A21 is the inverse of the mechanical impedance of the damper Zc' i.e., the mobility
ofthe damper, Yc

1 v
A2l = C= ~ = 112= 1/ Z, = Yc (2.44)

with the (viscous) damping coefficient c.

Mechanical Composite 2-ports
The use of matrix technique for determining the 2-port parame ters of composite
mechanical two-port networks (structures) is shown by applying the before men­
tioned connection rules on transmission matrices of translational mecha nical com­
ponents.
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k

a

~
1 2-:2

--+ F
V=V1-V2 m

"""",::,'~~ v,
b

Fig. 2.12. Cascade-connected basic 2-ports spring and mass

Spring and Mass in Cascade. The connection in cascade or tandem , Fig . 2.12, is
given by multiplying the component transmission matrice s (non-commutative)

~A.+: ~][~ j~mH~ I~:;:] (244)
=Ak~(jm)

where A
k
.
m

is the transmission or chain matrix of the cascade-connected spring­
mass structure.
Composite 2-port determined by its impedance-analogous parameters:

A
I 2

is the mechanical impedan ce of the mass, Zm
A12 = jm m = Zm (2.42)

A
21

is the mobility of the sprin g, Y
k

A2I = jm / k = I / Zk = Yk (2.40)

An is a non-dimensional coefficient, called the velocity transmissibility, T"

An = 1- mm2
/ k = 1+ Zm / Zk = r (2.45)

Spring and Damper in Parallel. Referring to the chosen force-to-voltage or im­
pedance analogy it must be taken into account that mechanical 2-port networks
connected in parallel, Fig. 2.13, are equivalent to electrical 2-ports in series being
in line with the general two-port networks presented in 2.2.2. Hence, parallel con-

F

a

2 F
---+

777 77 7 / //7777777/))/777

F(=F,'+F1' )

V (-v '- V" )1 - , - 1

-+ -+

b

(F2'+F2" =) F=Fs, d

(V2'=V2"=) v2
-+ -+

2

Fig. 2.13. Parallel-connected basic 2-ports spring and damper
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nection results from adding the component impedance matrices, Eq. (2.31)

] r
-fs- +c - -fs- - c]-c _ jaJ jaJ

-c - -fs- + c - -fs- - C
jaJ jaJ

(2.46)

=Zk,;(jaJ)

where Zk.c is the impedance or Z-matrix of the structure with the antimetric attrib­
utes Z21 = -ZI2' ZII =-Z22 and the only two independent parameters

k
ZII = Z21 = j aJ + c = Zk + Zc = Zk,c

ZI2 = Z22 = - j: -c = -(Zk + ZJ = -Zk,c'

Computation of the transmission or chain matrix by conversion of the 2-port pa­
rameters ZCm to ~k

[ ]
_ I [Zl1 -detZ]A'k - - with detZ = Zl1Z22 - Z21Z12'

1 Z21 I -Z22

so that
All = Zl1/Z21 = 1

Al2 = -Zl1 Z22/Z21 + ZI2 = 0

A21 = 1/Z21 =1/(k/jaJ + c)

A22 = -Z22/Z21 = I

[Aid = [II (k / ~ aJ + c) ~]
(2.47)

=Ak,c

where A
k
.
c

is the transmission or chain matrix of the parallel-connected spring­
damper structure (basic model of visco-elastic structures).
Composite 2-port determined by its impedance-analogous parameter:
A

21
is the equivalent mobility ofthe spring-damper combination, Yk•

C

I I IA21 = -k-- = = - = Yk (2.48)
~ + c z, +Zc Zkc ~
JW '

2.2.5
Supplementary Mechanical Elements. Couplers and Sources

Complex mechanical objects (structures) are not represented by model systems
resulting from only connecting fundamental elements among one another. Real
system components taking part in power transmission are combined with different
transforming and converting elements which will be defined as couplers and
sources.
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Couplers
Transformer. Physical objects which transmit power with neither storage nor ab­
sorption of energy are represented in model systems by an abstract object termed a
coupler. As to physical interpretation coupling elements are caned transformers
because of retaining the initial form of energy up to the output. Examples of ideal
mechanical transformers are rigid and lossless levers just as gears transforming
the related motion at the input to a related motion at the output. Analogous de­
vices denoting ideal fluid and electrical transformers are shown in Fig. 2.14 .

Converter. Related changes in the state of physical objects also may be of a dif­
ferent type, hence, energy is converted from one form to another. The relationship
between input and output variables of different physical type defines an abstract
object termed a converter . An example of irreversible conversion of energy is
given by the dissipator (or resistor) . Reversibly converting active elements (gen­
erators) belong to the sources .

The performed transmission through measurement devices refers to signals not
to power. Therefore, the relationship between signals of different type concerning
a measuring element involves a power conversion being kept on a low level. Ex­
cept, the measuring element is coupled with a separate power supply (auxiliary
source) being implemented for amplifying the input signal. The first case defines a
transducer, the latter one an amplifier.

Pressure magnifier
(Hyd rostatic transformer)

P2,QV2

(J), T2k---­
- (J)2 - T,

Gear train
(Torque I speed transformer)

~ ~~ -

Angular lever
(Force transformer)

~f\~ I

~:2
+v2

Diffuser
(Hydrodynamic transformer)

Transformer
(Cu rrent I voltage transformer)

1-­L...

2
i, u;

k---­<t;':«

u,.-

I
---;---......,J_.

I

V, P2
k---­

- ~- P,

i!-.-----.---.;

• I

P" II, ji-. -'---1
I

Fig. 2.14. Analogous devices of ideal couplers (Iossless transformers)
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For the sake of brevity, the input to output relationship will be referred to as the
transmission relationship of an abstract object, here of the constituent object of
the dynamical model idealized as a coupler.

The ideal coupler is a network component relating respectively a pair of T- and
P-variable rates at opposite terminal s, where the input and output powers are
identically equal , i.e.

a t' t -a2'2 == 0
Thus, the transmission relat ionship of an ideal transformer reduces to a con­

stant, defined as the transformation ratio of the coupler k

k =!:L =2l (2.49).
a2 'J

In the case of a lossless mechanical transformer, e.g., the angular lever or the
gear train, k is the lever ratio respectively the gear ratio defining the transmission
relationship by the ratios either of velocities or of speeds, and of its inverses by
those of forces or torques. In general , the ratios of appropriate flow and effort
variables are inverse relationships of power variables .
Coupler: ideal transformer, Fig. 2.14.
4-pole equations in matrix notation

[:J = [~ I~k ] [ : : ] (2.50),
"---v----'

=Ac
where A c is the transmission matrix of the ideal transformer with the transforma­
tion ratio k.

Sources
Energy conversion processes which activate physical systems are represented in
terms of idealized rate sources. In model systems the sources are termed active
elements of the model ; by contrast, the stores, dissipators, and couplers are termed
passive elements.

Corresponding to spatial relationsh ip the class of the generated rate or power
variable defines the type of idealized rate sources.

Psvariable Source (flow variable source). This abstract object generates a flow

variable 'swhich is a specified function of time but independent of the effort vari­
able a across the two-terminal element. Examples are force, torque , and current
sources, Fig. 2.15.

T-variable Source (effort variable source). This abstract object generates an ef­
fort variable as which is a specified function of time but independent of the flow

variable r through the two-terminal element. Examples are velocity, angular ve­
locity, and voltage sources, Fig. 2.16 .

The generally defined rate source may be regarded in particular as a source of
electrical energy being included in the equivalent circuit of an active (circuit)
element [16].
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a

b

Fig. 2.15. Graphical symbols of ideal flow generators. a P-variable 2-terminal source (ideal
current source and active one-port network); b ideal constant-force generator

a

b

Fig. 2.16. Graphical symbols of ideal effort generators. aT-variable 2-terminal source (ideal
voltage source and active one-port network); b ideal constant-velocity generator

Electrical Sources. Since the terminal current , cal1ed source current is' is inde­
pendent of the terminal voltage across the element, the active element is charac­
terized as an ideal current source

i(t ) = i/ t) by definition.

For the value i/t) =0 the current source is ident ical with an open circuit; it is
idle when short-circuited. Like an open circuit the current source is a constraint ;
but it is more general in that it constrains the current at its termin als to any desired
value. In this sense a current source can be considered as a generalized open cir­
cuit.

In precisely an analog ous manner the terminal voltage, cal1ed source voltage or

electromotive force u s' that is independent of the terminal current through the
element, the active element turns out to be an ideal voltage source

1I(t) = II s(t) by definition

Specifying the value es(t) =0, then the voltage source is identical with a short
circuit; it is idle when open-circuited. Like a short circuit, the voltage source is a
constraint maintain ing the voltage at its terminal s on any desired value. In this
sense a voltage source renders as a generalized short circuit.
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Active elements may be constructed by circuits of different arrangement super­
posing current and voltage sources. Replacing active elements by a 2-terminal
network the internal structure is no more of interest but only the performance at
the two terminals, considered as a port.

By measuring the performan ce at the l-port in restrained-state description the
behaviour of a 2-terminal source is completely described. Using complex repre­
sentation of sinusoids (complex r.m.s. values of currents and voltages) the rela­
tionship of alternating terminal quantities results in the (transformed) equations

u-ocz.: (2.5 Ia)

1 = 1-~ ll... (2.5 l b)

being identical because of

~ Zj = I 1 =~Us (2.52)

where Zi is the internal impedance, Xi the internal admittance of the electrical
source.

The equivalence relations, Eq. (2.5 Ia, b), correspond to the pair of source ar­
rangements being thus externally equivalent, Fig. 2.17a, b.

The ideal current source in parallel with the internal admittance Xi defines the
equivalent circuit of an independent current source, providing the source current

Iswhen short-circuited, Fig. 2. 17a

ll... = 0 1 = 1 = I se .

The ideal voltage source in series with the internal impedance Z; defines the
equivalent circuit of an independent voltage source, producing the source voltage
11, when open-circuited, Fig. 2.17b

1= 0 ll... = Us = Uoe

b

c
Fig. 2.17. Analogous arrangeme nts of 2-terminal sources (practical generators) . a Equivalent
circuit of independent current source ; b equivale nt circuit of independent voltage source;
c symbol for complete mechanical source
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Mechanical Generators. The rate source now may be regarded as a source of me­
chanical energy supplying translational mechanical objects . Though being some­
times physically complicated mechanical sources in general behave in a rather
simple manner. For this it is proper to represent physical sources by connecting an
ideal mechanical generator and an elastic system of source . The resulting model,
called a complete mechanical source, Fig. 2.17c, generates the prescribed sinusoi­
dal force or velocity at prescribed frequencies on the input point of the elastic
system which transmits its drive through for energy supplying at the output point.

Supposing that a constant sinusoidal force Fs is exerted at the input of the elas­
tic system, regardless of the load which is coupled to the output the mechanical
generator is characterized as an ideal constant-force generator, Fig. 2.15b

F(t) = ~(t) = Re[~ ej Wf 1
] = .J2 Re[~ ej Wf 1

] •

Provided that a constant sinusoidal velocity Vs is maintained at the input point
of the elastic system, independently of the load attached to the output the me­
chanical generator turns out to be an ideal constant-velocity generator, Fig. 2.16b

vet) = us(t) =-l i\ ej Wf 1
] =.J2 Re[ V sej Wf 1

] •

Frequently it is not feasible to physically separate the mechanical source into
its components and for these cases it is desirable to have a means of describing the
source in terms of quantities which can be measured at the only accessible junc­
tion, namely, the output point.

Output-terminal constraints, introduced in 2.2.3 , will be applied to the me­
chanical source relating the system variables of the output E, 12 to those of the in­

put Es' 12, It is possible to determine the 2-port parameters of the elastic system by
measuring the mechanical impedance looking into the source and also measuring
either the "blocked force" or the "free velocity" of the source .
Ideal constant-force generator coupled to an elastic system

output point restrained from moving (zero velocity 12 = 0)

E=Foe-(AI2IA11)~ (2.53a)

output point free to move (no force exerted E=0)

~ = use -(A,1IA12)l::
Ideal constant-velocity generator coupled to an elastic system

output point restrained

E = Foe -(AniA21)~

output point free to move

~ = use - (A211An)E (2.54b)

Equations (2.53a, b) and (2.54a, b) forming two sets of performance equations
describe alternatively the behaviour (performance) at two pairs of terminals of

complete mechanical sources in terms either of the blocked force foe which it can
generate or of the free velocity Qsc which it delivers and of related 2-port parame­
ters ot its elastic system . The ratios of two distinct parameters relating to the pres­
ent type of source remain to be determined.
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(2.57)

(2.56a)

(2.56b)!:Z = use - ~E

being identical because of

Zi~ = I ; use =~ Foe

Defining the parameter ratios AI2 / Al l respec tively A22 / A21 in terms of me­

chanical impedances of the elastic structure measured at point (2) either when
point (\) is unrestrained (zero impedance) or when restrained (infinite impedance)
the 2-port parameters may be eliminated by the followi ng complexors :

f ree impedance Zse = AI2 / All (2.55a)

blocked impedance Zoe = A22 / A2 1 (2.55b).

The ideal constant-force generator would automa tically terminate the elas tic 4­
pole in a zero impedance and also the ideal constant-velocity generator would
necessarily terminate its elastic 4-pole in an infinite impedance. Thus, replacing

Zsc and Zoe by the measured impedance Zjthe sets of performance equations (2.53),
(2.54) will be reduced to the single pair of 4-po le equations

E= Foe -Zi!:Z

where Zj is the internal impedance, 1; the internal mobility of the mechanical
source .

The equivalence relations, Eq. (2.56a, b), correspond to both types of gene ra­

tors and describe the mechanical source in terms of the measured qua ntities Eoe
and Zj or of the measured quantities Q sc and Xj'

Two convenient electrical equivalent circuits exist for mechanical generators
and either may be employed for the same mechanical source so long as the appro­
priate electrical quantities are inserted. Referring to the chosen force-to-voltage or
impeda nce analogy the characteristic quantities of 2-termina l sources (lossy gen­
erators) are corresponding as follows

Us = Uoe ~ Foe = F;, ; ~ = fse ~ use = Us (2.58 )

The repre senta tion associated with Eqs. (2.56a), (2.58), deno ting the equivalent
circuit of independent voltage source, Fig. 2.17b, is known as Thevenin 's theorem
in electrical circuit theory, and that associated with Eqs. (2.56b), (2.58), denoting
the independent current-source, Fig. 2.17a , is known as Norton 's theorem.

Mechanical sources exist whenever matter vibrates and by virtue of its contact
with other matter causes a second portion of material to vibrate. Thus, mechanical
sources are universal in their occurrence and are of prime importance to the vi­
bration engineer. As pointed out by Eq. (2.57) two quantities are necessary to de­
scribe a mechanical source, the third one could be computed.

The source impedance Zjof the structure is measured at the attachme nt points

of the equipment. The free velocity Q S!; is measured with vibration pick ups at the
same points. During this measurement the struc ture is unloaded. These free im­
pedance data are comp letely sufficie nt to determine the dynamic characteristics of
the structure by experimental investigations. These data identify the structure as
an unidirectional mechanical source and enable one to calculate the motion it will
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produce when driving any load [II], [17]. If 6 degrees of freedom motions are to
be considered, the problem is more complicated but mechanical sources still play
a basic role in the analysis [18].

2.2.6
Connections with Block Diagrams. Transfer Function Block Diagrams

Whereas in electrical circuit theory the realization of two-terminal pairs bases on
their close relationsh ip to the network representation, by contrast, in control sys­
tem engineering connections between the two-port -diagram and the block­
diagram representation obviously have priority .

Multivariable Systems
Applying transfer function block diagrams with multiple inputs and multiple out­
puts the advantages of the transfer function representation , 2.1.1, can be used for
two-port diagrams being interpreted as multivariable systems. Thus , the general
two port with conventional reference directions (chain arrow directions), Fig.
2.18a, may be considered as the equivalent system derived from the original block
diagram of a two-input, two-output system, Fig. 2.18b, by means of block­
diagram-reduction .

Signal Four Pole. The transforms of the input variables are related to the trans­
forms of both output variables. Their interconnections are denoted by forward
paths of the input signals Up U2 branching out to each of the acting lines for the
output signals VI' V2• The action relations are marked by 4 function al blocks
wherein the corresponding transfer functions Btm(s) are depicted representing the

a

b

.- ' - . _ ._ .- '-'_. .,
I

U1 + I ~
I
I
I
I
I

U2 + i V2

+ I
L ._ . _ . _ . _ . _ . _ . _:

Fig. 2.18. Block diagram of a two-input, two-output system (basic structures of a signal 4­
pole) . a Reduced configuration; b original diagram in the canonic al configuration
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2-port parameters of the equivalent two-terminal-pair network. Corresponding to
the signal flow along the connecting lines the single entity "2-port" is calIed sig­
nalfour pole .

The resulting algebraic relationships between the (transforms of the) variables
of this 4-pole are described by a pair of transfer function relations, where the out­
put quantities are represented as functions of the input quantities

V1(s) =BII(S)UI(S)+BI2(s)U2(S)

V2(s) = B21(s)U 1 (s) + B22(s)U2(s)

or, in matrix notation

[~ (S) ] = [BI1(S) BI2(S)] [U1(S)] (2.59b)
V2(s) B21(s) B22(S) U2(s)

Bes)

where B(s) is the transmission matrix of the signal 4-pole with the transfer func­
tions Bem(s) (f,m = 1,2) as its 4 elements.

The transfer function relations, Eq. (2.59), referred to as the canonical form for
the realization of a signal four pole, are corresponding with the general 4-pole
equations in the inverse form (inverse transmission matrix B), Eqs . (2.26), (2.27),
introduced in 2.2.1.

Since for interconnections of basic multi variable systems other configurations
are easier to work with , conversions of signal 4-poles are realized by equivalent
block diagrams. Replacing in Fig. 2.18 the crossed pair of branches by a paralIel
pair and reversing the series branches as to reference direction, Fig. 2.19 , the 4­
pole is described by a pair of transfer function relations in matrix notation

[
U Z( S)] = [ GI1( S) GI2(S)][UI(S)] (2.60)
VI (s) G21 (s) Gn (s) V2(s)

G(s)

where G(s) is the transmission matrix of the converted signal 4-pole with the

transfer functions Gqr(s) (q.r = 1,2) as its 4 elements.

[ '- '- '-1
. U .
I
I
1

1

I
I I
' - ' 7 ' - '

Source

u r1----..._-...-_~
I
I

-' j-'
Control elements

J 1 I<:«:
Load

Fig. 2.19. Block diagram of a terminated two-input, two-output system (basic structure of a
signal 4-pole in the field configuration connected to a source and a load)
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The transfer function relations, Eq. (2.60), referred to as the field form of a sig­
nal four pole, are related to the general 4-pole equations for parallel-series con­
nections of component 4-poles, Eq. (2.36).
Computation (of the inverse hybrid or G-Matrix) by conversion of B(s)

[ ] I [-B21(S) I]
G(s) = Gqr(s) = B

22(s)
detB(s) B

I2
( S ) (2.61)

Control system design makes practical use of linear multivariable systems by
the signal-four-pole representation. Unacceptable performance of a control system
often results when simplified models are used to design controllers for complex
systems in which several variables are to be controlled. If these variables affect
each other the control loops are said to be interacting.

Systems with Interacting Loops (back effects)
The design of controllers for each loop as if it where a separate system must be
regarded as an approach which may be sufficient in cases of slight interaction.
Thus, the basic structure of a signal 4-pole may be considered as a specific block
diagram for a system with interacting loops. For example, the field configuration,
Fig. 2.19, gives the complete representation of a control element being connected
with a two-variable source and a two-variable load. Hence , this configuration is
qualified for indicating how subsystems are coupled, consequently how far the
related variables are to be treated as coupled variables .

Total Noninteraction. The absence of interaction, especially the prevention of
active back effects caused by the output variable acting on the input variable may
be indicated by the transfer function block in the backward path, G 12(s).

(Total) backward noninteraction : GIZ(s) = 0 (2.62a)
Input VI affects output VI' output Vz has no effect on input Vz (possibly VI in­

dependent of Vz, if in addition Gzz(s) = 0).
Backward noninteraction is realized by active 4-poles (active elements)

through disconnection of energy flows, Fig. 2.20.
It should be noticed that power and signal amplifiers as well as modulators are

to be considered with more rigor as realizations of the basic device of a three-port
element resulting from significant energy interaction at a minimum of three ports ,
e.g., low power input , high power output, energy source, [22], outlined in 2.5.1.

In electrical terminology, the disconnection mentioned above requires the input
impedance of the second element to be infinite when connecting it with the first
element, which means that no power is being withdrawn from the first element. Of
course , a suchlike connection of components in cascade (or tandem) is an ideali­
zation characterized by the assumption that interaction of control elements is rep­
resented only by nonloading elements. In electrical devices, nonloading may be
achieved by inserting an isolation amplifier with high impedance between the two
circuits being combined and thus uncoupled from one another.

In cases where a significant loading exists, the overall transfer function for
components connected in cascade must be obtained from their 4-pole equations
rather than from the product law for single-variable systems, Eq. (2.1).
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Power
supply

a

U,( ' U2 )

\ Control.... ______
signal

V,( · V2)

'----'-.. \ Driving
signal

b
Fig. 2.20. Disconnected energy flows in active 4-poles . a Symbol for an actuator C'transmis­
sion of signal through" denoted by arrow); b basic structure of a signal 4-pole indicating back­
ward non-interaction

Examples of active 4-poles are related to the definite type of an actuator.
Whereas sensors provide the measurements necessary for feedback elements

actuators are required to control the energy flow of power supply . Acting on the
plant the final control element operates on the low-level control signal to produce
a signal of high intenseness covering the demanded driving power. This signal is
called manipulating variable . For supplying the driving power requirements pref­
erably electromechanical or hydraulic devices are applied.

Potentiometer system (regulating resistor) . The potentiometer system generally
is a position-to-voltage transducer very proper for the purpose of a feedback ele­
ment (feedback potentiometer). As to input element (command potentiometer)
there is a difference of use between the present class of control system being ei­
ther a regulator or a follow-up system. In the latter case the controlled variable is
kept near the command value, which is changing with time. In the first case of a
regulator the controlled variable will be kept constant in spite of disturbances. For
this purpose a command potentiometer is appropriated which primarily converts
by an additional spring element command force into displacement representing
the desired value of the constant controlled variable. The completion to a com­
monly known mass-damper-spring system points out that damping and inertia
force may appear as disturbances affecting the force-position set point , Fig . 2.21.

The power supplies required for transducers and amplifiers usually are not
shown in block diagrams of control systems, because they do not contribute to the
control logic. However, their existence cannot be ignored . Concerning the posi-
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Output resistance R

Fig. 2.21. Command potentiometer (force controlled input element for a regulator system);
specific noninteracting signal 4-pole; characteristic curve

tion-to-voltage transducer it will be assumed that the output resistance of the po­
tentiometer is low compared with the resistances of the combining network.
Therefore, wiper voltage may be taken independent of wiper current. Besides, the
current drawn by the wiper circ uit does not affect the force required to move the
sliding electrical contact, or wiper. Hence, the variables command force and
drawn current are uncoupled.

Hydraulic servomechanism. The hydraulic servomotor provides fast response,
high force and short stroke characteristics which meet many requ irements of con­
trol system design. Fields of application exist in the aircraft industry using this
type of actuator for power operated co ntrols, antostabili zers and autopilots. In
general industry it finds favour in speed control systems for prime movers, and in
the operation of process control. Precision control systems in hydraulics have
brought vast improvements in disseminating automati c control techniqu es. Hy­
draulic servomotors produ ce motion from a pressure source realized by a hydrau­
lic power supply. Performing the opposite function of pumps, motors and actua­
tors convert fluid energy back to mechanical energy. A motor usually produces a
continuous rotary output, whilst an actuator delivers a limited linear or rotary
output, Fig. 2.22.

The servovalve, denoted only by its basic stage being termed a five-port spool
valve, controls both the direct ion of the flow and the flow rate of the working me­
dium. The fluid is metered through the control ports when the spoo l uncovers a
segment of the cylinder-sided orifice . When the initial movement caused by an
interacting controller displaces the spool to the right the fluid enters the right-hand
piston chamber of the receivi ng unit, a double acting cylinder (linear actuator). Its
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Cylinder
(Actuator)

Ul~

t

Fig. 2.22. Hydraulic servomotor (servoactuator); specific noninteracting signal 4-pole in re­
strained-state description; stepinputandstepresponse functions

piston will be pushed to the left. This action is reversed for a valve displacement
to the left.

By disconnection of energy flows the piston force Fp may be taken independ­
ent of piston displacement sp' Besides, the piston force F; applied to the apprecia­
ble load does not affect the force F; required to displace the pilot valve . Hence,
the variables displacing force F; and driving force Fp are uncoupled.

The hydraulic servomechanism acts as an integrator, since the flow rate, con­
trolled by the spool valve position, produces a rate of movement of the output
piston rod. Therefore, the response of the linear actuator to an unit-step valve dis­
placement sv(t) is a linearly increasing function of time (unit-ramp piston dis­

placement) sp(t).
Backward noninteraction further can be realized by passive 4-poles (passive

elements) under restraints on energy transmission . Applied constraints are given
either by irreversibly converting energy from one form into another or by inten­
sively diminishing the performance with the direction of energy flow from input
to output terminals. Since the conversion of energy by passing physical objects is
irreversible the output signal does not affect the input signal.

Examples of passive 4-poles are related to the definite type of a converter .
Photo-diode. Optoelectrical systems are objects where the inductor current

does not affect the light source.
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Irreversible conversion from some other form into thermal energy indicates a
definite physical object being termed dissipator.

Many energy conversion devices are examples of thermal systems applied for
process control systems where the controlled variable describes a thermodynamic
process . Typically, such variables are temperature, pressure , flow rate, liquid
level, chemical concentration, and so forth. On the contrary the before mentioned
servomechanism is a control system whose controlled variable is mechanical po­
sition, velocity, or acceleration.

Other examples of passive 4-poles concerning conversion of energy are to class
as transducers . Being used in electrical devices to make measurements those ele­
ments are termed sensor. To prevent errors in measurement passive sensors must
have a low received performance to such a degree that energy transmission
through the object to be measured is not affected . This requires a load to be infi­
nite when attached to the output terminal-pair. In electrical terminology, a high­
impedance input of the following element makes quite sure that no power is being
withdrawn , Fig. 2.23.

In accordance with the before introduced idealization of nonloading elements
the passive type of a sensor may be replaced by an active sensor. Measuring de­
vices of that kind imply the demanded high impedance between the two circuits
by inserting an isolation amplifier.

Reciprocity theorem is to be applied to passive 4-poles representing interacting
components of electrical or mechanical systems . For input and output variables of
the same type that theorem states the presence of

total backward interaction: Gz/s) = G1Z(s) (2.62b).

Fig. 2.23. Restraint on energy transmission by a passive 4-pole with infinite load; high­
impedance input of the combining electrical circuit (passive sensor)

Partial Noninteraction . All kinds of usual passive elements accordingly convert­
ers such as electric motors or electrodynamic transducers have active effects . Be­
cause of lower supplied power than received at the input of passive elements the
design of control loops requires at least one actuator to raise transmitted perform­
ance to the original level.

Depart from the idealization expressed by Eq. (2.61) many control elements are
characterized by a

partial noninteraction: G12(s) '" a (2.62c).
The measuring transducer whose input can 't be adjusted to infinite but only to

high impedance, Fig. 2.23, is to be considered as an arrangement retaining partial
active effects, for instance.
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2.2.7
Analysis of Complex System Structures. Fluid System

When being satisfied with the validity of the chosen component models they can
be used to predict the performance of the system in question. Predicting the per­
formance from a model is a basic demand on systems analysis . A lot of types of
analytical techniques has been developed whose applicability to complex system
structures depends on the purpose of the analysis. For studying the dynamic char­
acteristics of large-scale power transmissions it is convenient to use multi variable
model systems. System components of different physical type are treated as
multivariable subsystems with interacting loops . Thus, power-loading effects of
connected elements are taken into account. Especially the two-input, two-output
system represents interrelationships between the power variables at opposite ter­
minals by 4 individual transfer function blocks for each component.

For example, hydraulic power transmissions are constituted by a pump, the
main component of a hydraulic supply , which drives a hydraulic output device by
transmitting fluid energy. Producing either a translational or a rotational motion
the power output device in hydraulics is known as a linear or a rotary actuator.
Latter one, called a motor , can achieve higher torque levels than electric motors.
The simplest form of a hydraulic power drive for machinery is shown in Fig .
2.24a.

a

X3
. . 'Xx,·, Xh

. . . X;.3

h 1-2
. . . . . .

Y3 ~., Yh ~'3 ~'2 ~.,

<!F =U= ~ ~ ~~=GJ=-IT x-l-
Electric Clutch Hydraulic Pipework Hydraulic Clutch Inertial
motor pump and motor load

b
Flow-control valve

Fig. 2.24. Hydrostatic drive. a Basic hydrostatic system (rotary circuit, open-center flow­
controlled by valve); b overall 2-port by signa14-pole cascade connection
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Detailed Models. Mechanical systems with distributed parameters (continuous
systems) are not required for control system design . The analy sis techniques must
realize a model, that describe s the dominant dynamic properties of the system to
be controlled. Therefore, instead of covering the deta ils of the fluid motion pat­
terns it will be a sufficient approach to predict only the system behaviour in the
gross by an adjusted model system.

Hydrostatic Power Transmission. Subdividing the transmission device into com­
ponents each of them may be described by 4-pole equations relating to an individ­
ual signal 4-pole. To determine the actual 2-port parameters for the useful basic
structure, Fig. 2.19 , the hydro static component will be regarded as an analogous
arrangement of supplementary elements, for example a 2-terminal source or a 4­
terminal coupler. Contrary to the idealization of previously treated two-port de­
vices the transmission loss cannot be ignored for the analysis procedure in sys­
tems engineering, for example in fluid power analysis .

Thus, a valid modelling of fluid-mechanical converters, i.e. of the pump and
the motor device, requires characteristics of power loss quantified by measuring
the influences of leakage and friction . For a sufficient estimation of parameters
the linearization of steady-state operating curves is performed representing volu­
metric and torque efficiency of hydrostatic components. Hence , an approximately
characterizing set of flows and pressures as well as of torques and speeds is asso­
ciated with the input port respectively with the output port [19] , [20].

Hydrostatic power transmissions also have energy storage characteristics in the
form of fluid and mechanical mass , together with structural and fluid elasticity.
These storage elements are very sensitive to excitation frequen cies of a transmit­
ted power. Therefore, fluid power design needs the prediction of disturbance in­
fluences like

- Excitation of model resonanc e
- Standing wave phenomena resulting in pipework damage
- Radiation of noise.

The pipework is a fluid conductor (continuous coupler) with interconnected stor­
age elements being represented by a distributed-parameter model. For predicting
the mentioned influences it is convenient to execute a lumped parameter ap­
proach . Depart from the known resistive characteristic involving a pressure drop ,
termed the fluid resistance Rh, there are analogous characteristics depending on
excitation frequency. As equivalents to electric circuit elements they are defined
as follows . The fluid inductance Lh characterizes inertia forces developed when a
fluid capacitance Ch arises from compression of the liquid added by elastic de­
formation of the pipe wall. In general , therefore R

h
, L

h
, and C

h
are composite terms

of the fluid impedance Zh of a fluid system. Thus, the interaction between pressure
and flow rate result s in the general transfer function relation

p(s)= Zh(s)qu(s) (2.63a)

with the input impedance of the fluid conductor

Zh(s) = Rt, + Lhs+ Ij(Chs) (2.63b)
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and its composite terms
~=/).p/qu ; 4.=pL/A ; Ch=AL//3e (2.63c)

(2.64)

determined by measuring the physical quantities: Sp pressure loss; qu flow rate , p

density of the fluid; L length of pipe, A cross sectional area , /3<effecti ve bulk
modulus (reciprocal of compressibility).

Under dynamic conditions a lumped-parameter equivalent system consisting in
a fluid resistor, an inductor, and a capacitor concentrated or "lumped" at one point
is valid since the time required for a pressure wave travel the length of the hy­
draulic line is short with respect to the period of the highest frequency wave that is
to be transmitted. This approach is certainly not suitable for step or impulse re­
sponse s for example, because that types of aperiodic test functions are composed
by a wide frequency range .

To evaluate dynamic characteristics of power transmissions preferably the fre ­
quency response is caused by applying a harmonic excitation sweeping over a
representative frequency range. The response characteristics for steady forced
oscillations along the fluid portion can be estimated by a numerical calculation of
frequen cy responses related to input and output variables [21] .

Defining the terminal pair at the output port h as functions of the terminal pair
at the input port h - I the individual signal 4-pole is described by the transfer
function relations in matrix notation

[
X h(S)] (h) [Xh _1(S)]

= B(s)
Yh(s) Yh_1(S)

(h)

where B (s) is the transmission matrix ofa hydrostatic component marked by the
running index h. Cascade connection by successively multiplying all individual
transfer matrices from input component to termination component results in the
algebraic relationship over the transmission line

[
X e(S)] (t) (H) (h) (2) (1)[XO(S)] [BII (S) B12 (S)][ X o(S)]

= B(s)B(s) ··· B (s ) · · ·B (s )B (s ) = (2.65)
Ye(s) Yo(s) B21(s) B22(s) Yo(s)

, =B(s) .

where B(s) is the transmission matrix of the overall signal 4-pole with the transfer
functions Bik(S) (i,k =1,2) as its 4 composite elements.

2.3
Network-diagram Representation (Circuit Diagrams)

Lumped dynamic model systems portray graphically the interrelation of various
components and sources which constitute the system. This type of model system
being a well proved approach to describe electrical and electromechanical devices
is termed the network or circuit representation [9], [15], [16], [27], [51].

Network diagrams represent the spatial flow of energy in the physical system in
terms of an interconnected set of components or subsystems. Network elements
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restricted to defined types those components represent spatially localized energy
storage and conversion processes in the physical system.

The element models relate the corresponding rates or power variables for each
component. The equations relating the across and through power variables , pref­
erably termed effort and flow variables, defined in 1.2.2, are postulated on the
basis of measurements performed on physical systems. In mechanical model sys­
tems corresponding power variables, such as velocity v and force F, are associ­
ated with an elastic, a damping , or an inertia element. When the elements are in­
terconnected to form a model system, the effort and flow variables must satisfy
interconnection requirements (statements of dynamic equilibrium and of restric­
tion).

2.3.1
Direct Representation of Simple Systems by Networks

To describe complex systems the overall behaviour is made up of basic behaviour
patterns that are contributed by each element. For simple physical systems a direct
systems approach is possible by converting a previously depicted schematic dia­
gram into the desired network diagram .

For example the translational mechanical system, Fig. 2.25, may be regarded as
a set of distinct, interacting mechanical objects whose behaviour may be defined
in terms of pairs of measurements.

The mass m
J

is connected to the suspension by a linear spring which has the
elastic constant k, while the two masses are connected through the linear spring
with k; Since the masses m

J
and m2 are constrained only to translate in vertical

direction the mechanical structure is characterized as a two-degree-of-freedom
system. Each component of the physical system has to be analysed in isolation
from the remainder of the physical system. The four physical objects to be consid­
ered are two springs, and two masses on which act the weight forces F~ J' F~r If the

Fig. 2.25. Schematic diagram of a two degree of freedom mass-spring system (two-mass sys­
tem) under the influence of gravity
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rest of the physical system is removed the dynamic behaviour of spring 1 may be
defined in terms of a measured relationship between the spring force and the total
deflection of the spring. If the fixed point of suspension serves as the inertial ref­
erence point, the dynamic behaviour of the isolated mass 1 may be defined by a
measured relationship between the inertial force and the acceleration.

Similar measurements with respect to definite connect ion points or between
connection and inertial reference point define the isolated dynamic behaviour of
spring 2 and of mass 2. By the effect of gravitational field the local forces of
gravity (weight forces) act on the masses as a static load. Due to elongations in the
springs the masses take up their equilibrium positions . Suspending the masses
from an ideal force-measuring instrument the weight forces also may be defined .

2.3.2
Fundamental and Supplementary Mechanical Elements

The sets of ideal measurements required to specify the individual behaviour of the
constituent objects of the physical system may be represented by the network sym­
bols for the mechanical elements introduced in 2.2.4 and 2.2.5.

Elementary Mechanical Elements
The physical springs and masses are two different types to describe systems be­
haviour in terms of the two forms of stored energy in elements . While the T-stored
energy in the spring coincides with the potential energy the P-stored energy in the
mass corresponds to the kinetic energy . Both storage elements are represented by
dynamic model symbols of passive 2-terminal elements , Fig. 2.26a.

The physical spring is concentrated on its elasticity, its principal property, and
represented by the following idealized model.

Spring. The potential energy storage element is the linear time-invariant spring,
Fig. 2.26a. The spring yields the defined or measured relationship between a com­
pressive elastic (or spring) forc e F, (P-variable rate or through power variable)
and the relative deflection s (T-variable state or across energy variable) due to the
displacements sl' S 2 at the two connection points or terminals:
Hooke's law

Fs (t) = k i s, - s2) = ks(t) (2.66a)

with the elastic (spring) constant or stiffness k.
By the time rate of change of displacement s as the "state (or energy) variable"

it follows the velocity v as the "rate (or power) variable". Thus , according to con­
tinuity of space relationship, 1.2.1, Fig. 1.2, the T-storage element law of Eq.
(2.66a) can be expressed by a relation between the applied force F, and the re­
suiting motion in terms of the velocity v

I t

Fs(t)=kf (v( -v 2 )dt=k[v(t)dt
o 0

presuming zero state (no energy stored in the initial instant t = 0).

(2.66b)
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The physical mass assumed to be a particle of mass perfectly rigid is concen­
trated on its inertia, its principal property, and represents the following idealized
model.

Mass. The kinetic energy storage element is the time-invariant mass, Fig . 2.26a.
The two terminals of the mass represent two points in space, where the object
terminal - identical to the upper connection point being free and associated with
the motion variable - is to be considered as a specific point on a massive physical
object being free of friction of any kind, and the reference terminal -correspond­
ing with the lower connection point at the L-shaped guide - represents a fixed
point on the inertial reference system.

The mass defines a measured relationship between a momentum p (P-variable
state or through energy variable) and a velocity v (T-variable rate or through
power variable)

ds
p(t) = mdi = mv(t) (2.67a)

By the time rate of change of momentum p as the "state (or energy) variable" it
follows the force F

m
as the "rate (or power) variable". Thus , according to a time­

invariant mass the P-storage element law of Eq. (2.67a) can be expressed by a
relation between the impres sed inertial (or mass) for ce F

m
and the resulting mo­

tion in terms of the acceleration a:
Newton 's second law (law of motion)

dp d dv
Fm(t) =dt =dt(mv) =mdT = ma(t) (2.67b)

with the mass (parameter) m.
The forgoing relations between force and a pertinent motion variable refer to

reversible processes by storing energy in either of two forms in elements that
serve as reservoirs. This behaviour identifying a conservative system is not valid
for physical objects taking part in nonreversible conversion, e.g., caused by phe­
nomena of friction .

Assuming energy dissipation - or, more precisely, energy conversion from the
translational mechanical state into the thermal state, a non-conservative system is
indicated . The frictional force in liquid friction contacts implying a lubrication
film, or in solid friction contacts, is different and depends on the velocity in a
complicated way. In certain cases, and over restricted range s of velocity, the fric­
tional force may approximate a linear proportionality with velocity. In that case
the physical dissipator is concentrated on a type of fluid friction, its principal
property, involving the energy conversion into heat , and will be represented by
the following idealized model.

Damper. The fluid friction dissipator is the linear time-invariant damper , 2.2.4,
Fig. 2. I Ic. The symbol for the dissipator element, shown in 2.2.4 , Fig. 2. I Ic, is a
viscous damper or dashpot , chosen because physical dashpots are commonly used
for the intentional insertion of damping. As in the case of the spring element, both
terminals of the damper are free to move independently.
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This type of dissipator represents a defined or measured relationship between a
resistive damping (or damper) force F

d
(P-variable rate or through power variable)

and the relative velocity v (T-variable rate or across power variable) due to the
velocities v" V2 at the two terminals :

Fd(t) = c(Vl - v2) = cv(t) (2.68)

with the viscous damping coefficient c.
The passive 2-terminal element symbols represent the storage or the irreversi­

ble conversion of energy in an object constrained to have only one degree of free­
dom in translational movement or the energy stored in one degree of freedom of a
less constrained object.

Equations (2.66b), (2.67b), (2.68) define the types of elements by a pair of rate
(or power) variables, i.e., by the instantaneous values of force and velocity . Their
product is equal to the time rate of change in translational mechanical state (or
energy) and represents
the instantaneous power P(t)

P(t) = F(t) v(t) (2.69)

The relations between force and a pertinent motion variable quantity define
idealized element laws by a descriptive quantity such as k, m, c, called element
parameters.

The local force ofgravity (weight force) Fg is rendered by an active 2-terminal
element being concerned in the reversible conversion of energy . Thus, the effect
of gravity may be represented by an:

Ideal mechanical source: ideal force generator, Fig. 2.26a.
This type of generator is appropriated to exert a static load on a mass m

F(t) = Fg = mg (2.70)

due to the acceleration ofgravity g.

Mechanical Generators
Ideal source elements serve as the conceptual means by which the introduction of
energy or a signal into the system is represented. Because of the instantaneous
power, Eq. (2.69), referring to the change of translational mechanical state, the
active element delivering energy to the system will be defined as aforce or a ve­
locity source (or generator) .

The source symbols, introduced in 2.2.5, take pattern from active elements of
electric circuits. Like the symbols for the three passive elements , the active ele­
ment symbols are shown as having two terminals, so that the sources can be inter­
connected with the passive elements to form closed circuits
The complete description of the dynamic behaviour of the physical system re­
quires the specification of

- the relationships between the measured variable pairs for each of the sets of
measurements, and

- the way in which the physical objects comprising the system are connected
together .
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a Spring Mass Force ofgravity

b
Fig. 2.26. Two-mass system. a Network symbols for basic linear time-invarian t mechanical
elements and ideal force generator; b system network diagram mechanical circuit

The overall system behaviour would be investigated by connecting the appropriate
set of instruments to the composite system. This set of pairs of measurements and
the stated relationships between the correspond ing individual variable pairs may
be represented by the system network diagram (mechanical circuit), Fig. 2.26b,
illustrating the overall behaviour of a two-mass system example.

2.3.3
Construction of Mechanical Network Diagram. Mechanical Circuit

This book is primarily concerned with relatively simple model systems in which
each element of the network diagram corresponds to an obvious component in the
actual mechanical system, and expressed in a different way, with systems model­
ling by drawing the mechanical network diagram directly from an understanding
of the way in which the actual system operates .

The mechanical circuit is defined as a clothed path in space which includes one
point in the inertial reference framework.

Illustrated by the two-mass-system example in 2.3.2, the construction of me­
chanical circuits will be reduced for simple systems being directly represented to
the following steps:

Each distinct velocity must be identified - including the referen ce, which is
usually the inertial fram e (or inertial reference system). Each velocity is
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marked by a node, or junction point, in the network diagram (VI' v
2

and the
suspension reference);

- the passive elements (k, m, c) are inserted in the network diagram between the
appropriate pairs of velocity nodes. In almost every case, each mass appears
with reference as one of the two nodes (m2 is drawn from v2 to the reference,
since a force applied to m2 depends on the acceleration (the derivative of v

2
) , k

2

is inserted between VI and v2 because a force applied to k, depends on the total
deflection Sl- s, (the integral of the relative velocity VI - vz) ;

- the sources are inserted between the appropriate nodes (F
g
, applied to m, is

connected to the node moving at the velocity v" Fg1 applied to m
l

is connected
to the node at the velocity vI' both remaining terminals of force generators
must be connected to the frame).

2.3.4
Derivation of Mechanical Network Equations. Equations of Motion

If the assumptions made about the spatial flow of energy in the physical system
are accurate , the network diagram will provide a complete representation of the
system, from which the dynamic behaviour may be derived systematically in terms
of mathematical relations . They are called network (or circuit) equations and de­
fine the mathematical model of a physical system. In many cases of mechanical
systems modelling the equations of motion can be written directly by inspection
from the network diagram.

By means of the three types of passive elements and the two types of ideal
sources (or generators), introduced in the preceding Sects. 2.2.4, 2.2.5, 2.3.1, the
relationships between the corresponding individual variable pairs are stated for
mechanical translational systems. To describe completely the dynamic behaviour
compatible interconnection requirements must be applied as well to the inspection
of the mechanical network diagram as to its construction performed before.

Dynamic Equilibrium Statement. The simplest approach among several synthetic
methods for the derivation of equations of motion bases on D'Alembert's princi­
ple. That statement of dynamic equilibrium, termed force interconnection re­
quirement, is defined as follows:

- The algebraic sum ofthe forces leaving (entering) a common junction (node) of
a mechanical network model equals zero.

Taking this rule as basis of inspection a set of motion equations will be obtained
for each node in tum. Anyone node (usually the reference node) can be omitted,
since the equation at this node is simply the sum of all the other equations.
The simplicity of that method can be illustrated by inspecting the network diagram
of the referred two-mass-system example , Fig. 2.26b.

Since two velocities, VI and vz' are unknown two equations are obtained - one
written for the sum of forces leaving the VI node, the other for the v2 node.
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There are four branches attached to the V I node , the source F
g

, and the three
passive elements k" kz, m l :

Fm, + Fs, - F
S2

- Fg , = 0 (2.71a).

The corresponding relation for the Vz node can be written by considering the at­
tached three branches:

F
m 2

+ F
S2

- F
g 2

=0 (2.72a).

Performance Equations. Using the component relationships between power vari­
ables F; V for each of the fundamental elements, Eqs. (2.66b), (2.67b ), the inter­
connective relation among the system power variable s VI and Fg J or Vz

and Fg 2 yields the

forc e-motion performance equations
t t

mlul + k1fvldv+ k2f(vI - v2)dv- Fg , = 0
o 0

(2.7Ib)

(2.72b)

(2.73a ,b)

(2.75a,b)

(2.74a,b)

t

m2u2 + k2 f(V 2 - vl)dv - Fg2 = 0
o

In vibration theory the displacement s is considered as the appropriate motional
variable . Relating force and displacement as the system variables F; S the inter­
connection results in the
differential equations ofmotion (nonhomogeneous)

mlsl + (k\ + k2)s\ - k2s2 = Fg , (2.71c )

m2s2 - k2s2 + k2s2 = Fg 2 (2.72c)

Exerting static loads on the masses, Eq. (2.70), the spring forces balance the
weights at the static equilibrium position . Since the weight forces equal the spring
forces due to the static deflections the static equilibrium condition is valid

mlgl - ksstall + k2 ( s stat2 - Sstatl) 0

m2g2 - k2 (Sslatz - Sstatl) = 0

where Sstat l ' and Sstat2 are the static deflections of the springs. Arbitrary positions

SI; Sz from the static equilibrium positions are given by the equations of the vibra­
tory motion

mls\ mlgl - k\(sl + Sstat l) + k2(S2 + Sstatz - sl - Sstall)

m2s2 m2g2 - k2(S2 + Sstat2 - sl - SstatJ

Using the static equilibrium conditions, Eqs. (2.73a ,b), the given relations
(2.74a,b) reduce to the governing equations of the free vibration of an undamped
two-degree-of freedom system:
Differential equations ofmotion (homogeneous)

mISt + (k1+ k2)sl - k2s2 0

m2s2 - k2s, + k2s2 = 0
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in matrix notation

[
ml °][ ~I] + [k1 + k2 -k2] [Sl] = [0]° m2 s2 -k2 +k2 s2 °

'------,,-----' '----v-------'
=M =K

in compact matrix form
Ms +Ks=O

where sand s are column matrices, the displacement vector and the acceleration
vector , respectively, and M and K are square matrices, the mass matrix being a
diagonal matrix, and the stiffness matrix, respectively

(2.76)

with the mass or inertia coefficients m jj (i,i = 1,2)
as its 2 elements :

mil = m) , m22 = m2 ' whereas m12 = m21 = 0 (2.77a)

and the stiffness or elastic coeffici ents kij (i,j =1,2)
as its 4 elements

kll = k) + k2 , k22 = k2 , k12 = k21 = -k2 (2.77b)

Because the coefficients m, 2 and m2 1 are equal to zero, the two coordinates Sl and S2

are said to be dynamically decoupled. On the other hand, the coefficients k
12

and
k2 1 are not equal to zero, so that the coordinates Sl and S2 are said to be elastically
coupled.

2.3.5
Connections with Signal-flow Diagrams. Oriented Linear Graphs

A representation of systems behaviour alternati vely to networks (or circuits) is
given by linear graphs. Replacing the introduced network symbols (2-terminal
elements) by coded line segments called branches, and connect ing the nodes to a
coded linear graph , the topological relationship between the system variables will
be equal to the presented network diagram (mechanical circuit). However, to rep­
resent the measurement pairs of the network an arbitrary set of orientations may
be allocated corresponding to an arbitrarily oriented set of measuring instrument
pairs . To agree upon positive direct ions of force and velocity (and hence dis­
placement and acceleration) an orientation convention will be adopted consis­
tently for force- and velocity-tran sducers measuring power absorbed in a network
element. Thus, each measurement pair may be represented by an oriented line
segment; the complete set of oriented line segments for the connected network is
said to be an oriented linear graph for the network or for the physical system be­
ing represented by the network.

Signal-flow Graph Definitions. This type of systematic diagram representation
applies oriented linear graphs on which nodes (vertices) represent variables and
branches represent specific relationships between the vertex variables, 2.1.4 .
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The representation of power-variables measurement pairs bases on the general
orientation convention that if both of the element power (or rate) variables are
positive the element is absorbing power. Hence, connecting a complete set of
power-measuring transducers with a consistent orientation to every network ele­
ment a complete power balance will be obtained.

Tracing back to the two-mass-system example the network elements pertained
are represented by single oriented line segments, Fig. 2.27a, whereas the interre­
lation of network variables is shown by the system oriented linear graph, Fig.
2.27b.

o

k,

b

Fig. 2.27. Two-mass system. a Oriented line segments for basic linear time-invariant mechani­
cal elements and ideal force generator; b system oriented linear graph mechanical signalflow
graph

Summary of Graph Properties. Signal flow graphs (SFG) are proper for illustrat­
ing power transactions in networks by defining the spatial or interconnective rela­
tionships among the system power variables . The analysis of translational me­
chanical systems is based on the following pair ofpostulates:
Incidence (or vertex) relationship for flow variables (through power variables):

- The algebraic sum of all forces exerted on a point of connection (mechanical
vertex) is identically zero (d'Alembert' s principle) .

Boundary (or circuit) relationship for effort variables (across power variables):

- The algebraic sum of all component velocities taken around any closed bound­
ary (mechanical circuit) of a network is identically zero.
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These two fundamental laws of mechanical network analysis are both necessary
and sufficient for the conservation of energy in a network model. They may be
regarded as a natural generalization of Kirchhoffs laws in electrical circuits.

Relationships which depend on the connection of the elements in the network
diagram and not on the exact geometrical properties will be termed topological
relationships being mainly used in network analysis by the following definitions:

- Branch (or path) is an element of a network (circuit element) or of an oriented
linear graph.

- Node (or vertex) is the junction (point) at which two or more branches meet.
- Loop (or circuit) is a set of branches forming a closed path (subnetwork or sub-

graph) passing only once through any node.
- Tree is a set of branches joining all the nodes of a network (subnetwork or sub­

graph) without forming a loop.
- Cut-set of a network (or a graph) is a set of branches of a graph such that cut­

ting all its branches increases the number of unconnected parts of the graph,
but the retention of anyone of these branches does not increase that number.

Some of the above terms may be illustrated by reference to the signal flow graph
of Fig . 2.27b . The nodes are marked as I, 2 and 3 and the branches as k .; k2• m"

m; Fg" and Fg2• Loops are formed by branches k, and m" by branches m. and Fg"

by branches k., m2, and k2, by branches F
g

" Fg2 • and k2, and so on. The branches k,
and k2 form a tree of the graph since they connect all the nodes of the graph with­

out forming any loops . For this tree the remaining elements m" m2, F gl' and Fg2 are
the corresponding chords. If the branches k2, m2, and Fg2 were removed from the
graph, then node 3 would be separated from the rest of the graph and the connec­
tivity of the remaining graph would be grater than that of the original graph. Fur­
ther cut-sets of the graph are formed by k; k2, m" and Fgt ; by k., m., Fg" m2• and
F

g2
, and so on .

2.4
Combined-flow-diagram Representation

There are two concepts which are basic in systems approach by diagram repre ­
sentation. The first, and more fundamental, is the network (or circuit) concept, the
visualization of a combination of physical components as a topological configura­
tion of basic elements which obey simple natural laws . The second is the block­
diagram (or signal-flow-diagram) approach to the analysis of complex systems.

To represent the behaviour of engineering systems in which two or more
physical domains are coupled, particularly of feedback control systems containing
an energy conversion process, a model system may be useful which is a combina­
tion of basic diagram concepts. The combined -flow diagram being a combination
of network diagram and block diagram represents the behaviour of a physical
system in terms of a combined flow of energy and signals in the model system
preferably of mixed domain dynamic systems.



www.manaraa.com

2.4 Combined-flow-diagram Representation 59

2.4.1
Symbolic Measurement of Dynamic System Variables

In order to represent systems by a combined-flow diagram, two symbolic conven­
tions are required in addition to the conventions for the representation of dynamic
behaviour in network terms and the representation of functional relationships in
block diagram terms:

Conventions for the symbolic extraction of signals from a network
- Conventions for the symbolic control of rate source outputs by signal variables.

Signal extraction conventions. In many cases, some dynamic system variable is a
function of a network rate variable (intensity or power variable). To show this
relationship symbolically the stated diagram representation requires a convention
for the symbolic measurement of a network power variable .

The convention adopted for the symbolic extraction of a flow variable (through
power variable) is marked by a circle at the end of a line segment being crossed
by a terminal line of the appropriate network element. This symbol emphasizes
the "through-propagating" nature of the power variable being measured and the 1­
point nature of the measurement.

The convention adopted for the symbolic extraction of an effort variable
(across power variable) is marked by a single crossline at either end of a branched
out line segment being attached to the appropriate pair of nodes. That symbol em­
phasizes the "across-acting" nature of the power variable being measured and the
2-point nature of the measurement, shown in the treated example of 2.4.2, Fig.
2.29b.

As shown in 1.2.2, storage element state (or energy) variables are related by
their time rate of change to the storage element rate (or power) variables. A net­
work state variable (quantity or energy variable) for a storage element is thus ob­
tained from the appropriate rate signal by use of an ideal integrating operator.

The conventions adopted for the symbolic extraction of storage element P­
variable state and T-variable state signals (respectively through energy and across
energy variables) are according to those for the appropriate rate signals supple­
mented by inserting the transfer function block of an integrator with the block
symbol lip in the appropriate line segment, Fig. 2.29b.

2.4.2
Symbolic Regulation of Supplementary Elements. Couplers and
Controlled Sources

Controlled Sources. Certain energy conversion and control processes may be very
conveniently represented on a combined-flow diagram by the use of ideal con­
trolled rate sources, also called dependent sources. The value of the rate (intensity
or power) output is taken to be proportionally equal to the value of the controlling
signal input. The symbolic conventions adopted for controlled T-variable or P-
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3fllJ E€ a'IIJ
a Ts(t)=ch, b a.(t)={3a ,

Fig. 2.28. Graphical symbols of ideal controlled generators . a Controlled P-variabl e 2-terminal
source (current-controlled current source); b controlled T-variable 2-terminal source (voltage­
controlled voltage source)

variable sources (respectively effort of flow variable sources) are corresponding to
the graphical symbols for sources of electrical energy, Fig. 2.28.

Couplers . The way in which physical systems in which power is transmitted with­
out storage or absorption of energy may be represented in terms of a network
model termed a coupler. The symbolic conventions adopted for couplers are corre­
sponding to the graphical symbols for electrical transformers or converters.

2.4.3
Connections between Network and Block Diagrams. Mixed Domain
System Structures

Having laid down special symbolic conventions to combine systematic diagrams
of different type the combined-flaw-diagram representation can be applied to en­
gineering systems incorporating both, energy conversion and automatic control.
As an example of mixed-domain dynamic systems the electromechanical servo­
mechan ism acting as a position control system may be taken up as introduced in
2.1.3, Fig. 2.29.

The schematic diagram, Fig. 2.29a, illustrates a remote-posit ioning system suit­
able for large inertial loads, e.g., to control the rotational positioning of a telescope
from a remote location.

The DC motor (actuator) is driven by an error voltage depending on the differ-

ence between desired EJr and actual angular position EJ. Applying this electrical
signal to the stationary field structure to provide a motor control field (field resis­

tance control) a torque Ts is developed , tending to rotate the motor output shaft

with the variable speed w. Thus, the DC motor and the separate power supply
form together with the amplifier unit a controlled source configuration acting as an
ideal voltage-controlled torque source. The potentiometers are converters with
power conversion on a low level which act as ideal mechanical-electrical trans­
ducers yielding directly electrical voltages according to angular positions .

The servomechanism provides the possibilities of remote positioning and power
amplification in a system with characteristics dependent primarily on the low­
power elements (the potentiometers).
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Command potentiometer (desired angular position e,)

Tachometer

Gearing

Feedback
potentiometer
(actualangular
position e )

/

/

W

a

e r

u;
U,

Ua2

W m
k=n:1 W

'
m I

em I
~Ts I

/ I
b

Ts=Gm/m I

Fig. 2.29. Electromechanical servomechanism position controlled, following McFarlane, [9].
a Schematic diagram; b combi ned fl ow struc ture network block diagram

Combined-flow Diagram. The model representation of the position control sys­
tem, Fig. 2.29b, will be constructed on the two main suppositions that the system
is linear and that the only significant energy storage occurs in the rotational inertia
of the motor armature, gearing, and load. This part of the control system will con­
sequently be represented on the combined-flow diagram by a netwo rk; the re­
mainder of the control system will be represented by a block diagram of the ap­
propriate functional relationships.
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Differing from the configuration of a basic control system illustrated in 2.1.3,
Fig. 2.3, the alternate control system outlined in Fig. 2.29b, makes use of an inter­
nal feedback compensation. By this configuration system performance is im­
proved. Being adapted to an intermediate plant variable the motor shaft speed com
is extracted in addition to the actual speed co, and fed back for use by the control­
ler.

System Equation Set. The transmission constants for the block diagram must be
defined, in particular the controlled source must be specified by the motor's
torque-current relation

o; = Tgj t; (2.78).

Furthermore the system parameters of the network have to be determined. Espe­
cially the transformation ratio of the coupler is ascertained as an indefinite gear
ratio

k=n:l (2.79).

The relevant dynamic and signal variables of the model system are denoted by

e actual angular position
e, desired angular position
co actual speed
com motor shaft speed
U, error voltage
V, generated voltage

(controlled variable)
(command input)
(extracted signal variable)
(error variable)

(2.80).

(2.81).

Summarizing transmission constants in parentheses to corresponding
coefficients the system differential equation will be reduced to

Je + ce + kte = kter(t) (2.88b) ,

thus representing a second-order model. The reduced form, Eq. (288b), can be
rewritten

By inspection of the combined-flow-diagram the following interconnective rela­
tions can be derived :
Error voltage (amplifier input voltage)

U; = U, - Val - Ua2 = Kter - K]e- K2K2]com
Servomotor' s torque

Tg = GcGmUe = GcGm(Kte r - Kte - K2K2]com)

dco m I( dCO)= cmco m + Jm(ff+I cLCO + J Ldt

Since com = kro , and putting co = dejd t the differential equation is satisfied by

the system response e
( 2) d

2e
( 2 2 )deJL+k Jm dt 2 + CL +k Cm +k GmK21K2Gc (f(+kGcKtGme=kGcKJGmer

(2.88a) .
constant

d k k
-iQ. = -~e-.f..co+~e
dt J J J r

(2.89a)
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and combined with

de = OJ (2.89b)
dt

to give an equivalent pair of first-order differential equations governing the sys­
tem behaviour

(2.90).

2.5
Bond-graph Representation (Multiports)

Derived from the theory of linear graphs the bond graph method uses modified
graphs .

Attempts to set up a structure for system analysis based on the electric circuit
or graph concept will prove severely limited in usefulness for significant problems
in many other fields . Basing on the implications of energy flow in physical sys­
tems the concepts and notation for bond graphs aim at providing a uniform
mechanism for the description of a wide variety of physical systems . Whereas a
model system such as the network diagram is well adapted to electromagnetic de­
vices the main purpose of bond graphs is to represent systems involving mixed
physical domains.

Focusing attention on energy exchange with the environment and also on the
particular internal power transmission , problems will be formulated in terms of
power variables first, and then proceeded to general purpose techniques involving
nonelectric systems and their representation in differential equation form. In many
cases, the means for direct physical modelling are provided (i.e., system synthesis)
by directly accounting for energy storage, supply, and dissipation effects through­
out the system based on fundamental physical considerations.

Although pure signal flows (i.e., "zero" power information transmission) are
permitted in the scope of bond graph techniques, these signal flows will appear as
a special case of general power interactions and will be used only as a result of a
conscious act in the modelling process. By this, some fairly common errors and
inconsistencies that result from an inadvertent neglect of back effects may be
avoided .

Viewing system behaviour from the standpoint of energy continuity and power
balance bond graph techniques are compatible with standard analysis methods of
proven usefulness. Nevertheless, bond graph representation is quite apart from
theoretical implications of the study of energy flow using linear graphs. The bond
graph approach may be rather regarded as a practical method for generating a
mathematical model. Applications will certainly be in the simulation of complex
dynamic systems in which the physical logic of the subsystem models is not lost,
and a certain flexibility in the choice of subsystem models is permissible, so that a
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balanced model system may be formed and the effects of system design changes
may be readily exhibited.

Review ofBond Graph Approach. The term multiport - now standard in circuitry - originated
with H. A. Wheeler in a conscious effort to extend energy-based network techniques to micro­
wave bands and beyond. Generalizing on these ideas to analyse mechanical and other physical
systems several researchers began to employ the terms energy ports, power bonds , and mul­
tiport elements . A former option favoured a form of duplex block diagram or signa l flow graph
being needlessly confusing for complex systems. Tracing back to earlier structure graphs in
chemistry W. K. Clifford established the abstraction of a linear graph of nodes and branches as
a mathematical system in its own right. Basing on graph theory it was possible to represent
power flow as a single line - the power bond - to obtain the generalization of the power engi­
neers one-line diagram. Taking the nodes to represent the relations , and the branches, the
terms, C. S. Peirce expressed systems of relations and of proportional functions as simple
structural formulas . H. M. Paynter, [22), adopting the convention of graphing each multiport as
a nodal element settled the two ideal 3-port energy junctions to render the system of bond
graphs a complete and formal discipline.

Attempts to present bond graph techniques to professional engineers have been made by D.
C. Karnopp and R. C. Rosenberg , [23) . Besides an introduction to computer simulation of engi ­
neering systems the bond graph approach has been applied especially to fluid power systems
and hydrostatic drives by J. U. Thoma, [24).

Multipart Components
The external variables selected for physical component description are directly
related to power flow (power variables). The identification of variables may be
regarded as the identification of a port at which power interactions between the
component and its environment can occur. A way of describing a component is
then to call it a multipart, i.e., a subsystem that may interact with other systems
through one or more ports .

A bond graph will show all the ports explicitly whether or not the port is asso­
ciated with a spatial location on a component. Though power is commonly ex­
pressed in terms of a product of two variables , diagrams will be simplified by re­
striction to product representations of power. Accordingly, components are repre­
sented with words or letters and ports or power interactions with single lines or
bonds . The latter are of primary interest since the expression of power flow could,
in principle take many forms with respect to the concerned pair of physical vari­
ables. Besides an internal description of each multiport though being quite unre­
stricted the term bond becomes significant for configurations of interconnected or
bonded multiports (system bond graphs) .

Effort and Flow Variables
Though scalar power flow need not be expressed as a product of two variables it is
convenient to split into particular factors that are easily measured and that can be
given physical interpretations.

For modelling purposes it is convenient to think of the intensive variable as an
effort, e, and the extensive variable as aflow,f, so that their product will yield
the instantaneous power exchanged

pet) = e(t). !(t) (2.91).
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Many attempts have been made in associating analogously pairs of mechanical
with electrical variable and in claiming in several domains to be of a certain natu­
ral similarity, as treated in 2.2.3. It also has been argued that the power variables
split naturally into intensive-extensive or across-through pairs and that this pro­
vides a rationale for considering one member of the pair as the equivalent of an
effort and the other as a flow. In the bond graph approach, however, this causes
no difficulty because the treatment of effort and flow is symmetrical and thus the
selection of effort-flow pairs is quite arbitrary . None of the concepts and tech­
niques would change in any essential way if the roles of effort and flow were in­
terchanged in any domain.

2.5.1
Classification of Multiports

Any physical system may be conceived as a multiported device with multiported
elements . Using highly idealized versions of physical elements a basic set of mul­
tiports has been defined , other multiports may be formed by combining the basic
multiports, Fig. 2.30a.

Basic Multiports
One-port. A I-port element being defined in terms of a single pair of power vari­
ables at a port may be thought of as a generalized impedance. Some specific ex­
amples of l-ports in which energy is stored are the
- capacity element (C-element or capacitor);
- inertance element (I-element or inductor);

or in which energy is dissipated being called the

- resistance element (R-element or resistor) .

Active elements also can be defined by a l-port device . An ideal source is as­
sumed to provide one variable as a function of time while the other one is arbi­
trary without regard to the power delivered or absorbed, thus being defined as the
- effort source (E- or Se-source) ;
- flow source (F- or Sf-source).

0
err:

1 ---ftf
--2 ~

I
f

a b
Fig. 2.30. Bond graph symbols and assignments . a Set of basic multiports: I-port, 2-port, and
3-port; b power bond with indicated effort-flow signal pair: acausal bond, causal bond, and
positively directed power flow
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Two-port. A 2-port element may be conceived as a generalized transport process ,
i.e., a process by which energy is transformed, transmitted, or transduced. An
electrical or mechanical oscillator formed by interconnecting a l -port inertance
and a l-port capacitance may be interpreted by a 2-port device .

Also couplers are in general described by power-conserving 2-port elements
acting as a transformer, a gyrator , or a transducer.

Three-port. A 3-port element may be thought of as a generalized modulator, in­
cluding (triportal) ideal energy junctions, see 2.5.3 .

This implies power and signal modulators, power and signal amplifiers, and
power exchangers as proper examples for engineering devices .

2.5.2
Conventions for Interconnected Multiports. Augmented Bond Graphs

When components share common power variables the components are bonded
together with a single line. Power interactions can occur and hence energy may
flow from one multiport to the other . A vexing problem in all system investiga­
tions is the question of sign convention that also arises in bond graph modelling.

Sign Convention for Power
Half Arrow. Multiports being bonded together in such a way that common efforts
and flows exist at the two ports the power flow out of one multiport is the power
flow into the other. Furthermore, the direction ofpower flow along the bond must
be considered. Conventional notations for positive values of the effort and flow
quantities are so arranged that energy flows from left to right. On the bond graph
this is indicated by a half arrow on the right end of the bond.

Causality Convention for Effort and Flow Variables
Causal Stroke. Causality implies the existence of two variables, one independent
and the other dependent . Once a power bond has been described in terms of an
effort-flow couple then it may be uniformly assumed that the effort and flow sig­
nals on a signal bond are always oppositely directed. Thus a transverse stroke at
the one end of the bond, the so-called causal stroke, can serve to indicate simulta­
neously the direction of both, the effort and the flow signal. A useful mnemonic is
the association of the flow variable, f, with a direction parallel to or along the
bond, and the effort variable, e, with the transverse stroke, [22].

2.5.3
Fundamental Interconnective Relationships.
Generalized Kirchhoff's Laws

The 3-port is a singular and most essential element. Classical mechanics recog­
nizes but a single 3-port, namely the triportal energy junction; in this realm all
systems are conceived as interconnected sets of l -ports (generalized impedances)
and ideal energy junctions.
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For a generic multiported element restricted to be ideal , that means a flux of
energy into this element is neither stored nor dissipated,
the equation ofenergy continuity states

n n

IF; = IeJi =0
i=l i=1

(2.92).

A large class of energetic elements approximately satisfy this fundamental princi­
ple on which the overall theoretical analysis of model systems is based.

Several of the most useful ideal elements as couplers are already treated in
2.2.5. In particular, two basic 3-ports are presented being ideal in the power­
conserving sense and that allow bond graph representations for a large number of
physical systems analysed by conventional methods.

Ideal EnergyJuncUons
From this point onward a duality of interconnective relations must be emphasized,
for there exist two conjugate energy junctions, the effort junction and the flow
junction. These two ideal 3-ports form much of the basis for bond graph methods
and largely set the bond graph apart from conventional representations. The fun­
damental idea is to represent as ideal multiports the two special types of connec­
tion structures (fundamental configurations) known as "parallel" and "series".

Both junctions are characterized by the condition that one of the two conjugate
variables is common to all bonds, whilst the other ones sum up to zero.

Flow Junction (O-junction, or common-effort junction). The symbol for this
element is a zero with three bonds emanating from it. Using the power sign con­
vention for the junction with 3 bonds the conjugate relationships are defined as

3

ei = e (2.93a) Iii = 0 (i = 1,2,3) (2.93b).
i=l

The O-junction has a single effort on all its bonds and the sum of the flows to the
element vanishes .

Effort Junction (I-junction, or common-flow junction). This dual of the 0­
junction is represented by the symbol "1" with three attached bonds . With the in­
dicated power sign convention for this element
the conjugate relationships result in

/; = I (2.94a) (i = 1,2,3) (2.94b) .

A single flow exists for a I-junction and the efforts on the bonds sum to zero .
These equations bear a dual relationship to Eqs . (2.93a,b) , but both the O-junction
and the I-junction satisfy the power conservation relation, Eq. (2.92).

The conjugate relationships (junction laws) are simple generalizations to
Kirchhoff's loop and node laws in the electrical case, and, borrowing C. Ferrari's
terminology, the laws of velocity and equilibrium in the mechanical case .
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2.5.4
Construction of Mechanical Bond Graph. Mechanical Multiport

The method for finding valid bond graphs may be applied to systems that are
composed of circuitlike elements in a single energy domain. An example to study
vibration problems is given by the elementary mechanical system (simple oscilla­
tor), Fig. 2.31.

Fig .2.31. Schematic diagram of a one degree of freedom mass-spring system (one-mass system)
under the influence of gravity

Specifying the multiport structure for this common type of mechanical system
amounts to translating standard system representation, i.e., the mechanical sche­
matic diagram, into bond graphs using the basic set of multiports already defined
in 2.5.1.

Partly due to tradition, one typically attempts to describe the dynamics in terms
of velocities or displacements. Thus the development of a bond graph is started by
establishing l-junctions for each velocity of interest and particularly for every me­
chanical node in the system. The forces on the nodes may then be found by using
O-junctions to find relative velocities across the I-port elements.

It must be taken care of inertia elements as the force does not pass through the
mass and the velocity of the mass is measured with respect to an inertial frame.
Despite these restrictions for mechanical circuits the bond graph representation of
the example system is easily verified by relating the forces (efforts) of the C­
element spring k and the R-element damper c to the proper relative velocity (flow)
v, further by applying the element forces to the node (I -junction), and thus to the
I-element mass m. The gravity force Fg is an effort source being also connected to
the corresponding node, Fig. 2.32.

Features of System Bond Graphs
For lending insight to a variety of mechanical systems certain features of bond
graphs appear frequently leading to proved concepts.

Concept of a Junction Structure. By bonding together sets of l-ports and ideal
energy junctions any number of ideal multiports may be formed which are desig­
nated junction structures. In the case of elementary mechanical systems junction
structures composed of 0- and l-junctions are common, Fig. 2.32.

For lumped parameter systems with moving reference points (or points of at­
tack of l-port elements) one shall be advised to follow a systematic procedure:
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Fig. 2.32. One-mass system. System bond graph mechanical junction structure. a Acausal
graph with explicit variables and parameters shown; b graph with sign conventions for power
flow; c causally augmented graph

- Assign a l-junction to all points with a definite velocity (flow) v;
put all l-port elements , except I-elements masses m, between the appropriate j,

junctions behind a O-junction;
I-elements masses m are directly attached to the l-junction representing the
speed of the appropriate point or moving element.

For many problems, the finding of a junction structure provides a satisfying check
on the consistency of the formulation.

A slight generalization of the 3-port 0- and l-junctions is possible by noting
that two similar 3-port junctions joined by a single bond form a 4-port junction.

Concept of a Field. Generally, transactions of energy are related to multipart
fields. The system configuration is composed of C-, I, and R-elements, respec­
tively. This partitioning of a system, which is mainly of conceptual interest, has
great practical significance for automatic simulation, [22], [23], [24].

2.6
Comparison of Diagram Representations
(References to Applications)

For visualizing the input-output behaviour of a physical system being verified by a
valid model system a variety of diagram representations is in common use. For the
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Model system Verification criteria
representation Static Dynamic Signal Inter- Energy Non- Design
(levels ofabstraction) behaviour behaviour flow action flow linearity paramet.

(loading) estimat.

Block
diagram x* x* x (x) (x) - -
Signal flow graph

'"Two-port

c: diagram
x* x* x x x - -.S! (bilateral signal

U
e flow)-III Bond-graph..c
I'll- representation x x x x x - -0
CI) (multiports)CI)...
Cl NetworkCI)

0 diagram x* x* x x x - x
(circuit)

Schematic
diagram x - - - - x x**
(pictorial
representation)

* valid only for linear systems, otherwise forsystems linearized atequilibrium point
**valid only for static orsteady-state behaviour ofsystems

Fig. 2.33. Specifications of diagram representations related to model verification

the individual case a choice between the diagram represe ntations is made in con ­
sideration of the special feature s in the type of transact ions and the complexity of
interconnected structures. The types of diagrams representing dynamic systems as
outlined in 2.1 to 2.5 by a comprehensible survey rather differ in the degree of
abstraction being embodied and in verification criteria being satisfied by the
model system Fig. 2.33 .

2.6.1
Schematic Diagrams. Visually Descriptive Diagrams

Pictorial-schematic Diagram. A systematic app roach to the development of
technical products (machines and devices) includes design engineering meth ods,
in particular the calculation for designin g. Thus, the dyn amic analysis being per­
formed on an engineering system generally impli es the task ofdesign .

Dynamic system des ign involves virtually all phases of dynamic analy sis. The
only differen ce is that in design the analysis can be repe ated seve ral times . Inde ed,
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if the designed system does not perform as desired , then improving changes must
be made until it does.

A pictorial representation looking somewhat simular to the engineering system
yields an image of physical objects thought to be realized . Though the symbols on
this visually descriptive type of diagram are not well standardized essential design
parameters for a systematic embodiment are frequently depicted. Parametric in­
formations are only concerned with the static behaviour including stiffness ef­
fects, at best with an approximate steady-state behaviour since somewhat inertial
and damping effects are assumed. The purpose of this type of representation is to
display information needed to construct a schematic diagram. Mechanical sche­
matic diagrams composed of basic elements are typical for the overall theoretical
analysis in vibrations .

2.6.2
Systematic Diagrams. Interconnection Diagrams

To visualize the dynamic behaviour of interconnected structures specific types of
systematic diagram will be put into action. The modelling process for lumped
systems includes a mathematical description of each of the components plus a
complete description of the manner in which the components are interconnected to
form the system. A systematic diagram consists of a set of component mathemati­
cal models which

indicate the pairs of points in the system at which measurements would be
made to correspond with the system variables;
indicate the polarity of those measurements.

An interconnection diagram joins the model of any component - its measure­
ment diagram and terminal characteristic - and the model of the system intercon­
nection pattern together to derive corresponding sets of equations required for an
unique solution .

Block Diagram and Signal Flow Graph. By transforming related input-output
variables the block diagram allows an algebraic and graphical representation of
the cause-and-effect relationships in a given system. It is convenient to maintain
the functional uniqueness of each of the physical parameters. This permits the
direct manipulation of the block diagram to effect corresponding changes in
physical components or values.

The principal advantage of a block diagram is that the system's physical com­
ponents are themselves represented by blocks indicating their operations rather
than by line segments . Thus, the block diagram more closely resembles the physi­
cal structure of the system .

Though the block-diagram approach is a useful tool in the analysis of the sta­
bility and dynamic performance of feedback systems there are several fundamen­
tal limitations and disadvantages. An alternate representation of the system which
pictures the system in more detail than a block diagram , but which retains the vis-
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ual representation of the flow signals through the system is given by the signal­
flow diagram. It provides the representation of system performance and proves an
efficient aid in the analysis of complex feed back systems. It further simplifies the
derivation of specific rules and techniques for the analysis of feedback systems.
Once the signal-flow diagram is drawn and the preliminary analysis of the detailed
system behaviour is accomplished reduction formulas may be applied.

The very nature of the block diagram (or signal flow graph) assumes that the
transfer function of the tandem combination of two blocks is the product of the
individual transfer functions. Thus, the primary advantage of the block-diagram
approach is, however, the ease with which the contributions of various compo­
nents to overall system performance can be evaluated. The full realization of this
advantage usually demands that the component blocks are assumed to be non­
loading. that means without any interaction.

Thus, the isolated single-coupled representation is an idealization satisfactorily
suited to low-energy transactions basing on the indications of signal flow.

Two-port Diagram. To cover systems behaviour with interacting loops (back ef­
fects) a bilaterial signal-flow diagram may be applied representing an interaction
conceived in two variables, thus attributing a direction of causality in the interac­
tion. Two-port networks are standardized two-line diagrams interconnecting two­
terminal pairs (2-port components) which are separate entities of many common
engineering components being modelled on a higher level of abstraction.

Various internal reticulations of 2-port models have been schematically de­
picted in electrical engineering originating in the theory of long power transmis­
sion lines.

Linear 2-ports may be mathematically represented by way of 2 x 2 transforma­
tion matrices in standard form. In addition to the four causal matrices the trans­
mission matrix (or chain matrix) has been developed which establishes a direct
spatial correspondence to the ports themselves. By this the transmission of power
through is described for the resultant two-terminal-pair network.

Bond-graph Representation. For predominantly passive systems composed of
energetically coupled physical components rather than of isolated signal-coupled
functional boxes the bond graph is to be preferred . This type of diagram inher­
ently maintains the proper pairing of signals to give actual powers, whereas the
same signal pairs are apt to be separated and somewhat dispersed in manipulating
a block diagram or a signal flow graph .

A power bond may be conceived as an interaction; associated with each bond
are two variables , the first pertaining to an effort and the second to a flow, their
product yielding the power or energy flow rate.

The bond graph approach is compatible with common analysis methods. In
particular, the bond graph techniques are well suited to represent the power flow
through various energy domains (mixed-domain dynamic systems), thus being an
alternative for replacing combined-flow diagrams. Using configurations of inter­
connected (bonded) multiports and graphing them as nodal elements the preceding
concept of 2-ports has been carried on. Together with a modified graph the power
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flow is represented by the power engineers one-line diagram , thus being a gener­
alization on a higher degree of abstraction.

Network Diagram. Complementary to the block diagram concept by network
diagrams a more fundamental concept is established, also called circuit concept as
being well approved in electrical circuitry . This type of diagram bases on visual­
izing a combination of lumped-parameter components as a topological configura­
tion of network elements which obey elementary physical laws. Lumped systems
or networks are interconnection diagrams being configurations of two-terminal
elements (l-port components). Since sources and couplers are inserted and sign
conventions introduced mechanical circuit diagrams can be constructed usually by
converting the more convenient schematic diagrams . Thus, for a wide variety of
practical problems network equations (equations of motion) can be derived sys­
tematically by inspection without founding on advanced principles of analytical
dynamics.

By transforming the pertinent force-motion relations into the frequency domain
the concepts of mechanical mobility as well as of dynamic compliance permit the
steady-state approach in vibration analysis under bypassing differential equations.

In more complicated mechanical systems the circuit equations can be derived
by the application of the power-balance concept (in somewhat more generalized
form termed Lagrange's formulation in complex situations) .
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(Mathematical Model)

The model representation through diagrams corresponds to the mathematical rela­
tions between the quantit ies (system variables) of the model system.

Mechanical systems with discrete parameters (lumped parameter models) are
described by ordinary different ial equations delivering in most appl ications a suf­
ficient approach to predict the dynam ic system behaviour.

3.1
Representation of Mechanical Systems by Differential
Equations of Motion

The forced mass-damper-spring system commonly referred to as a single degree­
of -f reedom system (simple oscillator) will be used as a generic system for which
only one coordinate is required to define completely the configuration of the sys­
tem at any instant.

Variables correspond to mechanical quantities describ ing excitation and re­
sponse, and they are functions of time. For translational mechanical systems the
system variables can be identified with the f orce F (input; excitation) and the dis­
placement s (output; response) as the pert inent motion variable quantity.

Element Parameters (lumped parameters). Mechanical components, or elements,
refer to parts (subsystems) of the mechanical system. The passive elements are
identified with the element parameters:
elastic (spring) constant (stiffness) : k
linear (visco us) damping coefficient : c
mass : m

Those element parameters characterize the model system as linear, time­
invariant, and they are measured or defined by the three types of idealized element
laws treated in the preced ing chapter (linear characteristic curves depending on
material properties and geometrical fundamental s), Fig. 3.1.

The model system behaviour is governed by
the equation ofmotion (vibration equation)

n=2
L[s]= '2>vs(v)(t )=ms+ cs+ks=F(t ) (3.1)

v=o

being classified in mathematics as a linear, nonhomogeneous, second-order ordi­
nary differential equation with constant coefficients. The differential equation can
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F(~---+1

(Force) excitation
(Input)

Damped mass-
spring system 1--- - -. s(~

(Displacement) response
(Output)

s(~

c

Fig. 3.1. Damped single degree-of-freedom system. a System functional block diagram.
b schematic diagram

be subdivided into the

left-hand side:
linear differential expression of the
output of the system or the response:
Displacement set)
(and its time derivatives)

right-hand side:
source function acting directly on the
system by the input or the excitation:
Forcing function F(t)
(external force)

(3.2a)

In this case, the translational coordinate x is equal to s as the convenient symbol
for the physical variable displacement (translational mechanical system).

3.1.1
System Specifications by Normalization of the Differential Equation.
Time-response Analysis

Normalized differential equation used in vibration theory

.. c . k I F( )s+-s+-s=- t
m m m

makes evident the model system behaviour by the following specifications.

System Parameters (vibratory specifications). Quantities which characterize a
system by interrelation effects of passive elements. The parameters formed by
ratios of the element parameters k, c, m are constants. Definite values can be as­
signed to each constant ratio .
Damping coefficient (attenuation coefficient) :

8 = -f- = wOS (3.3)
2m
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time constant (relaxation time):
t, =l/o=2m /c (3.4)

damping ratio (fraction of critical damping):

s(or .9) =.-L =_c_ =_ c_ =..£. (3.5)
Wo 2mwo 2.[;;k cc

critical damping coefficient (critical viscou s damping):

cc =2mw o =2..rmJ( (3.5a )

(undamped) natural frequency as an angular (circular) frequency :

Wo = ~k/ m (3.6a )

as a (cyclic) frequency

10 = w o/{21[) = ~k/m/{21C) (3.6b)

being the reciprocal of the natural period of oscillation:
To =21[/W o =1/10 (3.7),

and describing the frequency of free vibration resulting from only elasti c and in­
ertial forces of the system.
By substitution Eq. (3.2a) is converted into

s +2os+ w ~s=l-F(t) (3.2b)
m

2

S + 2Sw os + w~s = Wko F(t) (3.2c) .

A change in the independent variable t by applying the non-dimensional time
(natural time)

,=wot (3.2d),

introduced by K. Magnus , [25] , and devel oping the first two derivatives of s with
respect to t:

. ds ds dr ds ,
s=d(= d, d/=wo d, =wos

.. ds dS dr 2 "s=-=- -=Wos
dt dr dt

permits together with the vibratory specifications a conversion of Eq. (3.2a) into
the "non-dimensional f orm " of the equation ofmotion

s" + 2ss ' + s = iF( r ) (3.2e).

The constant coefficients are one or quantities of the dimension one in the left­
hand-side expression. The non-dimensional system representation by use of "natu­
ral time" r will be applied to the time-response analysis in the following sections.
Especially the graphi cal representation of actual responses takes advantage of
normalized dependency on time because sets (or families) of time-history plots
easily can be traced by varying the only one system parameter introduced by
E.Lehr, [26], that is the damping ratio S. This parameter defined by the ratio of
two quantities of the same kind, and that by relating the actual damping coefficient
c to the critical damping coefficient cc' solely specifies the system behaviour of a
single degree-of-freedom oscillator, see Appendix A.
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Standardized differential equation used in control theory

m » c , I F( )-s +-s +s= - t
k k k

makes evident the transmission behaviour , e.g., of a controlled mechanical sys­
tem, also termed a mechanicaL pLant, by the following specificat ions.

System Parameters (control specifications). Quant ities which characterize a sys­
tem by the speed of attaining equilibrium state (delay time) after removal of exci­
tation or restraint. The parameters are constants and have the dimension of time.
Time constant due to damp ing:

c 215 2(T.. =-=-=-=2(T (3.9)
k ()) ~ {)) o

time constant due to inertia:

T2 =fff = ;0 =T (3.10)

time constant related to natural period of oscillation
1

T = 2n To (3.11)

proportional action coefficient (proportional gain):

K p = 1 (3.12).
k

With the control specifications follows the
time-constant representation of the equation of motion

T/ s + 1(s + s = KpF(t ) (3.8b)

T2s+2(TS + s=tF(t) (3.8c)

which describes the proportional behaviour of a 2nd-order deLay (or Lag) eLement
(P-T2-element), acting as a phase-shifting section, [27] to [31] .

3.1.2
Free and Forced Response of Damped Second-order Systems

Time response of the vibrating system variable , the displacement , is obta ined as
the general (complete) solution of the differential equation of motion . Some gen­
eral properties of solution s of linear differential equations may be recited .

Superposition principl e (linearity principle). The general or complete solution
of a nonhomogeneous linear differential equation is a combination of the solution
of the corresponding homogeneous differential equat ion and an arbitrary particu­
lar solution of the nonhom ogeneous linear differential equation, [32] to [35].

Free Response of a Single Degree-of-freedom System
Corresponding homogeneous differential equation describes the linear oscillator
in the absence of an external force as excitation (forcing function) F(t) : 0

n= 2

L[s]: ~>vs(v) ( t )=O (3.13a).
v~o
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By assuming an exponential function in the form
sh (t) = se pt (3.l4a)

Sh(t)=spe pt Sh(t)=sp2 ePt (3.14b)

with the constants sand p as trial solution and substituting Eqs. (3.l4a,b) into Eq.
(3.l3a) it is obvious that nontrivial solutions only will be obtained by satisfying
the characteristic equation, in this case a quadratic equation

P(p)= mp2 +cp+k=O (3.l3b);

two roots (solutions): eigenvalues

Pt,2 =-2~±~(1;r -~
= -8 ± ~82_ w6 = -swo ± Wo ~S2 -1 .

According to the theory of differential equations for two distinct solutions, that
form a fundamental system, i.e., Sh are linearly independent, the Wronskian de-,,,
terminant is non-zero.

General solution of the homogeneous differential equation is the complemen­
tary function sh (t) being the sum of the two exponential quantities and describing

the natural (eigen-] motion ofthe damped oscillator

sh (t) = C1e P1t + Cze
P21 (3.16).

The roots of the characteristic equation are specifications to distinguish natural
vibrations with regard to stability and periodicity of motion

root criterion for stability : sign of the real part: c/(2m) = 0
If the real part is negative the solution function decreases with time and the repre­
sented physical system is said to be a stable system.
Vice versa the solution function increases and the oscillator is an unstable system

root criterion for periodicity: sign and value of the radical being called

discriminant t1 =«c/ (2 m) )Z - (k / m) 1= (0 2 - W 5).
Three cases concerning the discriminant differ from oneanother. If the dis­

criminant is negative and not zero the solution function describes an oscillatory
vibration being said a periodic motion. Vice versa the solution function describes
a non-oscillatory vibration being said an aperiodic motion.

Case 1: t1 < 1; PI ,2 two complex conjugate roots (always in a pair due to real ele­
ment parameters).
Less-than-critical damping (underdamped system):

c<cc=2.J'iiJZ 0 <OJ o '<1

Pi .z = -0 ±jOJd = -0 ±j~OJ~ _oz
= -'OJ 0 ±jOJo~.

System Parameters. Quantities which describe the free vibration of a damped
linear system.
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Damped natural frequency as an angular (circular) frequency

wd =~W6 _0
2 =Wo~I- t;2 =Wo~I-(2~kr

as a (cyclic) frequency , the reciprocal to damped natural pe riod

W d 2nf d =-2 ; Td =-n wd

(3.19a)

(3.19b).

(3.23a) ;

Both solutions are complex

sh(I) = Cje<- &+j Old)t + C
2e<-o-jOld)1

= e-ot(C\ejOl dt + C
2e-

jOldt) (3.20a);

by applying Euler ' s formula (identity) for both positive and negative exponents

e ja
== cos a + j sina

e -jn == cos a - j sina

the two real solutions or trigonometric functions are obtained

Sh (t ) = (CI +C2)coswdt+(jC\-jC2)sinwdt (3.20b) ;
'-----v-------' '---.r-----'

=C; =C;

trigonometric theorem

a cos a - b sin a = c {cos (a - X) bzw . sin (a + B)}

c = .Ja 2 +b 2; tanx=b/a; tanB=a/b

fundamental (natural) vibrati on ofthe underdamped system

sh (t) = Ce-Ol
COS(Wd t - X) (3.20c) .

Constants of integration

C = ~C; 2 + C? X = arctan (C; / Cn .

The natural vibration is of oscillatory nature but not periodic as its amplitude
decays exponentially with time. The free damped oscillator is permitted to vibrate
after being displaced from its equilibrium position (zero-driving response). By this
the energy storage elements are loaded , thus, the initial state is defined by the
non-zero initial condition at time t = a

ISol+lsol >O (3.21).

The constants of integration C, Xcan be determined by using
initial displacement; initial velocity

s(O-) = so; s(O-) = So (3.22) ,

C 2 ( so + osO)2 So + oSoso that = So + ; - X = arctan """::""_--"-
wd sOWd

Initial-conditionfree vibration (transient response) ofthe underdamped system:

s(t)= s~ +( So ::sore-"! COS(Wdt- X)
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normalized form by relating free displacement S to initial displacement So

SeT ) (sb /So + ( ) 2 r (~2 )1+ e -..., T cos ,,1 - ( T - X
So 1- (2

with normalized initial velocity; (trigonometric) initial phase

s~ / So + (
s~ =so/wo; -x=arctan ~ .

,,1- (2

(3.23b)

(3.4a)

(3.19c) .

(3.5c) .

Natural Data Plotting. The displacement time history of the oscillatory free vibration (transient
motion) started from specific initial values can be seen in Fig. A.I of the Appendix A.

The system parameters are determined in general not by direct measuring of response time
history (displacement-time curve) but by deduction using measurable quantities which base on
time or length (transient-response specifications).

So, the determination of natural (cyclic) frequency /0, (Eq. 3.6b), applies the static equilib­
rium condition introduced in 2.3.4, to tum over to a measurement of length. Substituting Eq.
(2.73) in Eq. (3.6b) yields:

10 = ~g/Sslal /(2rr) (3.6c)
which implies that the natural (cyclic) frequency can be obtained, consequently the natural
period of oscillation, Eq. (3.7), once the static deflection of the spring S"', caused by the local
force of gravity F" Eq. (2.70), is known .

For a determination of the (viscous) damping ratio S. Eq. (3.5), the measuring of the time
constant (relaxation time) T" Eq. (3.4) , or of damped natural period Td, Eq. (3.19b), would be
possible. The boundary within which the decaying response curve oscillates is a decaying ex­
ponential termed envelope of "amplitude". The time constant is specified by the time range
which would be required for the envelope to reach zero if the initial slope (or rate of decay) did
not change. The damped natural period is specified by the time range for one cycle of the os­
cillatory decay curve . Taking up the subtangent adjacent to the initial tangent of the envelope
respectively the zero crossings in the same direction of the response curve the following rela­
tions result from measurement of time intervals (durations):

T, = 1/J = 1/(wOS) ; normalized: T r = 1/(

t; =2rr/wd =2rr/(Wo~) normalized: Td =2rr/(~I-(2)
One of the simplest and most frequently used technique of vibration-measuring systems is

the experimental determination of damping by picking up distinct peaks in vibratory motion
history . The ratio of two successive displacement amplitudes (peaks) of like sign in the decay

s" s,+' is a constant

s. ~ SA e-i;o:>olj r T T IT
_1__ "1 -I" _ = e""roo d = e dr,

S; +I - ~1_(2 S e-i;o:>o(lj+Td)

and the logarithmic decrement is defined

2rr(
A (or J) = In(si/si+l) = (wold = ld/T'.c = Td/Tr = ~

,,1- (2

It should be noted that this analysis assume s that the point of maximum displacement in a
cycle and the point where the envelope of the oscillatory decay curve touches the decay curve
itself, are coincident. This is commonly very nearly so, and the error in making this assumption
is usually negligible. This proves true for a damping being very small, so that

Td::::2rr A::::2rr/Tr=2rr( for (<<I (3.5d).
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Measuring two nonsuccessive displacement peaks n cycles apart s" Si+"' where n is a integer, the
logarithmic decrement is defined

A (or 0) = In(si/Si +n) = nS{j)o'Id = n'IdlY; = nrd/rr = nSrd (3.5e).
Thus, the damping ratio can be determined according to Eqs. (3.5c), (3.5e) as

S= ~ A = ~ 'Id lY; (3.5f) .
(2rr)2 + A2 (2rr)2 + ('Id ly;)2

The equivalent viscous damping coefficient Ceq can be determined as

Ceq = ~ cc = ~(2mwo)= 2sm{j)o
where Cc is the critical damping coefficient, m the mass, and Wo the natural frequency .

Case 2: ~ > 1; Pl.2 two distinct real roots.

Greater-than-critical damping (overdamped system)

c>cc =2...rmJ(.; o >{j)o; s >1

Pl,2 = -0 ± A = -0 ± ~02 - (j)~

(3.5b)

(3.24)

(3.25) .

(3.19d) .

(3.26a);

System Parameter. In addition to Eqs. (3.19a) to (3.19c) the overdamped case is
characterized by the term radical ofthe real eigenvalues

A = ~02 - (j)~ = {j)O~S2 -I = (j)O~(2~kr -1

Both solutions are real

Sh ( t ) = C1e<·o+A)1 +C
2e<·O

-A)1 =e·ot(Cle Al +C
2e

' A1)

by applying the hyperbolic identity

a -a
cosh a = e + e cos j a

2
a -a

sinha = e - e = _ jsinja
2

the two real solut ions of hyperbolic functions are obtained

sh (t) = (C1 + C2 ) cosh At + (C1 - C2 )sinhAt
'---.r----' '---.r----'=C; =C;

hyperbolic addition theorem
fundamental (natural) vibration of the overdamped system

sh (t) = Ce· ot sinh(At + B)
Constants of integration

(3.26b) ;

(3.26c) .

The natural vibration is non-oscillatory and is often referred to as a "subsi­
dence" (it subsides). If the system is displaced and released corresponding to the
non-zero initial condition (zero-driving response) , Eq. (3.21), the constants of in-
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tegration C, e will be determined.

2 (SO+<5S0)2
C = So + A

so,1,
B= artanh . <5

So + s

Initial-conditionfree vibration (transient response) ofthe overdamped system:

s(t)= s~ +eo +/so )\-01 sinh(,1,t+B) (3.27a);

normalized form

s(,) 1- (so /so -sl e-C:;Tsinh(~ ,+B) (3 .27b)
So t;2 - 1

with normalized initial velocity; hyperbolic initial phase

t ' ~So =So /0)0 ' B= artanh / ., So So +t;

Another form to represent the aperiodic approach to equilibrium position of a free
damped oscillator is preferably applied in controls.

System Parameters (control specifications). Parameters characterizing an over­
damped oscillator by the speed of attaining equilibrium state are given by
the time constants, also termed delay times:

(3.28a)

(3.29b)

(3.29a);

(~r _1;2

(~r-122

1: =_...L=_1_=_1 (<5+,1,)
51 PI <5 - A O)~

1: = __1 =_1_=_1(8-2) = T.
2
\ -

s2 P2 8 + 2 O)~

Time-constant representation is common for two 1st-order storage elements in
series (P-T\-elements) :

Ts (so + Ts so) -tiT t; (so + Ts So) -tiTs(t) = \ 2 e 5, _ 2 Ie"
T

SI
- T

S2
T

Sl
- T

S2

normalized form by relating free displacement s to initial displacement So

s(,) = 'sl(l + '52 so /so) e-T/TsI _ '52(1 + '51 so /so) e-T/Ts2

So '51 - 'S2 '51 - '52

(3.28b) .

with normalized time constants (delay times)

'SI = r.», =t;+~
'52 =TS2 0) 0 = t; -~

Natural Data Plotting. The displacement time history of the non-oscillatory free vibration
(transient motion) started from specific initial values can be seen in Fig. A.2 of the Appendix A.

The subsiding character of the decaying response curve results from a superposition of two
decaying exponential components. The normalized time constants ' ,I' ' " are specified by the
time ranges bringing the components to zero if their decaying would be continued at initial
slopes . Taking up the corresponding subtangents the relations to the damping ratio (are given
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by Eq. (3.28b). Each of the decaying exponentials is regarded effec tively zero after a time equal
to four time constants. This approximate criterion is applied to the dominant component with
the largest of both time constants by which the duration of transient response can be valued .

Figure A.3 of the Appendix A shows the effect on the non-oscillatory free displacement re­
sponse caused by varying the given set of initial conditions. The decay curves approach equi­
librium position without passing zero except that the signs of initial veloci ty and initial dis­
placement are opposite.

Case 3: ~ = 0; PI = P2 a real double root.
Critical damping (critically damped system)

C = Cc = 2..j;J{ ; 8 = wo ; c; = 1

PI = pz = -8 = -wo
In this case Eq. (3.16) yields only one solution

() C• -roOI (332 )shl t = t e . a .

From the theory of differential equations, it is shown that another solution sh
2
(t)

can be assumed in the following form

sh2 ( t ) =Sh
l
(t)·u(t) where u(t)=e - roo l (3.32b);

Equations (3.13b), (3.32) are solutions of (3.13a). They constitute a fundamental
system. The corresponding general solution is

Sh ( t ) = ( C1 + Czt)e- roo1 (3.32c).

The solution function (3.22c) is similar to (3.26c) belonging to case 2. The two
arbitrary constants CI' C2 can be determined from the initial conditions

C\ = so; Cz = So + w oso'
This yields the corresponding form (zero-driving response) to (3.27a,b).
Initial-condition free vibration (transient response) of the critically damped sys­
tem

s( t) = [so + (so +woso ) t ] e - rool (3.33a);

normalized form by relating free displacement s to initial displacement So

s;:) =[1+(:: +r)]e-
t

(3.33b).

Figure A.3 of the Appendix A shows in addition to overdamped system responses the free re­
sponse of a critically damped system. The decay curve pertaining to S = I represents the limit
of oscillatory motion and yields an equilibr ium position approach being the fastest without any
oscillations. That is, a critically damped system has the smallest amount of damping required
for non-oscillatory motion. Many devices, particularly electric al instruments in control systems
are critically damped to take advantage of this property.

Forced Response of a Single Degree-of-freedom System
to Harmonic Excitation
Particular solution of the nonhomogeneous linear differential equation. To find
such a function three approaches are possible:

Method of reduction: differential equation reducible to linear first-order differ­
ential equations ;
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- Variation of param eters (Lagrange):
Sp (t) = C, (t)Sh

l
(t) + C2 (t)Sh

2
(t) (3.34)

trial functions C\(t) , C2(t) (parameters replaced by function s that are to be de­
termined);

- Method ofundetermined coefficients
suitable when forcing function is such that the form of a particular solution
may be guessed by assuming for it a type of function that is congruous to the
excitation.

The simple harmonic excitation as the most common external force (forcing func­
tion) acting on a system and characterizing a forced vibration is given by

F(t) = frcosmft (3.35a)

with the (real) force-excitation amplitude: fr , (single) forcing angular frequency:
to f (or n) . The harmonic excitation F( t) has a periodic time denoted as

the f orcing period 'If and defined as

7' _ 2n
i f -­

mf

The trigonometric trial function

sp(t) = SI cosmft + s2 sin mft = s cos(mf t - qJ os)

sp(t) = - sm f sin (mf t - qJo,)

sp(t) = - sm i cos(mf t - qJos)

satisfies by substituting the trigonometrical theorem

cosm ft { s (k- mmn cos qJos + cm fssinqJos - fr }

+sin mft { S(k - mmnsin qJ os - cm fs cos qJ os} = 0

the equation of motion, Eq. (3.1), if the solution function representing a forced
response takes the following characteristic parameters of a sinusoidal quantity :
Displacement amplitude s as the forced peak value

~ I
=F-r=========

,~ ( k - mm;)2 + (cm f )2

=A(mf)
F I

T ,~(l - 17 f ) 2 + (2'171)2

=1';at =A(17I)1A(O) .~
Displac ement phase angle (or initial phase) qJo as the forced argument

s

(3.37a)

««

='1'1
= '1'1 provided that qJOF = 0 ,

(3.37b)
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where 'Po, equals If/, in the case of usually chosen zero-crossing excitation, thus
omitting the initial phase of excitation force 'PO>"

System Parameters. Real-valued quantities which describe a system characteristic
by the relationship between excitation and forced response.
Amplitude (-frequency) response A(OJ) at OJ = OJ f ' called

the displacement response fa ctor

A(OJ f) = Vl~(k -mOJi)2 + (cOJf)21 = OJ ~/I~(OJ ~ - OJn 2 + (28OJf / I
= sli

signifying the amplitude ratio of displacement response s to force excitation F ,
and in normalized form being called
the magnification factor (or non-dimensional displacement response factor)

~\~)) = yl~(1- rd)2 + (2('71 )21 = Rd =s/Sstat (3.38b)

at the frequency ratio (ratio of forcing frequency to undamped natural frequency):
OJf

'71 =- (3.39) ,
OJo

being defined by the amplitude ratio of displacement response s to spring dis­

placement that would occur if force i were applied statically (static deflection )

Sstat = (ilk) .
Phase (-frequency) response 'P(OJ) at OJ = OJ f ' called

the phase difference

( )
COJf 280Jf

If/ OJ f = 1f/1 = arctan 2 = arctan 2 2
k - mOJf OJ o - OJ f

2('71= arctan--2 = 'Po - 'Po
1- '71 s F

signifying the phase angle difference between displacement response 'Po
s

and

force excitation 'PoFmeasured from the same (zero-time) origin; in particular

identical with the displacement phase angle 'Po
s

.

Being identified as the phase difference of a second quantity (the response)
with respect to the first (the excitation) the argument parameter will be termed the
phase lag (phase shift)

-If/\ = 'PoF - 'Pos = -'P0s ; 'P0F = 0

Forced vibration (steady-state response) of the underdamped system

sp (t) = i COS(OJf t _ arctan COJf ) (3.41a) ;
I 22 2 k 2v(k - mOJ r) + (cOJf) - mOJf
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normalized form by relating forced displacement sp to static deflection sSla,

sp(') I ( 2t;lJl)
-- = cos lJl' - arctan --2

Sstat ~(l_lJ?)2 + (2t;lJI )2 l-lJl

The steady-state response is thus a continuing harmonic vibration with the forcing
frequency wr , Eq. (3.35a) , respectively the forcing period 1f , Eq. (3.35b), or in

normalized form with the frequency ratio lJl' Eq. (3.39), respectively

the normalized forcing period, I defined as

'I = 21t = Trwo
lJI

Total or Complete Response of a Single Degree-of-freedom System
General solution of the nonhomogeneous differential equation describes the re­
sponse (output) of the system to both an excitation (external force) and the initial
state. Applying the superposition principle to the linear system the homogeneous
solution Sh(t), called complementary function, is added to the particular solution
sp(t) to obtain the total or complete response .
Complete displacement response of the underdamped system

Sges(t) =sh(t) + sp(t) = Ce-ot cos(wd t - X) + Scos(wr t - If/I) (3.42).

The constants of integration, C, X, are determined from the initial conditions. For
simplicity, all initial values vanish defining thereby
the zero state:

(3.43);

i.e., the oscillator with energy storages being empty is assumed to start at t =0
from rest (zero-state response) .
Complete displacement response for the oscillator initially at rest

A 1 {( ) Wo -ot ( )}Sges(t) = F cos wr t -If/t - -e cos wd t - X
~(k - mw~i + (cwd 2

wd

(3.44a)

where v, equals Eq. (3.40a) ;

The above classification is somewhat artificial because initial conditions are
generally produced by the removal of excitation or restraint. Thus, the response
depends of the characteristic parameters of the excitation quantity in addition to
the system parameters itself. In this regard, it is convenient to distinguish between
the steady-state response ss(t) representing a forced vibration and the transient

response s,(t) characterizing the change from one steady state to another by a free
vibration, so that:

sp(t)=ss(t) sh(t)=St(t)
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normalized form by relating displacement s to static deflect ion S"at

s( r ) I I ~
- = {cos(1]\t: - \lid - e,1;t cos(V1- S 2t: - x)}
Sstat ~(I - 1]~) 2 + (2S1]1)2 ~

\ I

(3.44b)
with the non-dimensional steady-state vibr ation Ss( r) / Sstat ' respectively the non-

dimensional transient vibration St ( r) / Sstat '

and where \III equals Eq . (3.40a); X = arctan [ S I + 1]~ J
~1-1]~

The complete response, also called com bined motion , beha ves differently in ap­
proachin g the steady state since the dissipation of energ y per cycle increases. A
large amount of damping results in a change from oscill atory into non -oscillatory
transient state of free vibration.
Complete displacement response of the overdamped system initially at rest

Sges(t) = sh ( t) + sp(t) = Ce,8t sinh (At - ()) + Scos( wf t - \III )

=F ~ I {cos(Wr t - \II l) - ~O e '8t s i nh(At + ())}
(k - mwi )2 + (c Wr )2 A

where \II 1 equals Eq. (3.40a)

normalized f orm

(
A 82 _,.1,2-Wi)

() = -artanh d 2 2 2
8 -A +wf

(3 .45a)

s(r) = I {cos( 1]l r - \II , ) - I e '1;t sinh(g=1r+())}

Sstat .~(1 - 1]? )2 + (2S1]I i . ....J2Cl ,
=ss(;)/ Sstat = St(r) / Sstal

where \II, equals Eq. (3.40a) ; o= - artanh[J2Cl 1- 1]~ J .
S I + 1]~

(3.4 5b)

Response Data Plotting. The time history of the oscillatory likewise of the non-oscill atory dis­
placement response (combined motion) is given in Fig. A.4 and A.S of the Appendix A, apart

from fitting the curve to zero phase angle qJ OF = 0 .

In general, steady-state response is one in which the system achieves a certain type of equ i­
librium, such as a constant response or a response that repeats itself ad infinitum, without ap­
proaching zero or without growing indefinite ly with time. In describing the steady-state re­
sponse, time becomes an incidental factor. In fact, quite often the steady-state response can be
obtain ed from the total response by letting t approach infinity. On the other hand, the transient
response depends strongly on time.

Considering the combin ed motion of complete displacement responses to a harmonic exci­
tation , Fig. AA and A.S, Appendix A, the forced vibration s do not differ on time history , al-
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though the magnitude of damping has changed over from less, Fig. AA, to greater than critical
damping, Fig. A.5. Certainly, a difference in response amplitude and phase angle can be ob­
served. Those characteristic parameters related to the previousl y specified system param eters
are used to characterize the steady-state behaviour in vibration theory. The system parameters
gathered from forced vibration characteristics are furthermore correlated with f requency­
domain or steady-state specifications required for system analysis in vibrations and controls.

On the contrary the free vibrations inherent in the combined motions are showing quite dif­
ferent shapes of time history due to a change in the damping magnitude. To character ize the
combined motion by a change in equilibrium, for example from zero state of a system being
initially at rest to the steady state of forced vibration, in addition to the above characteri stics
time-domain or trans ient-response specifications are stated, see Fig. A.I and A.2, Appendix A,
belonging to the performance requirement s for system analysis in control theory.

Broadly speaking, steady-state response occurs in the case of constant, harmonic, or peri­
odic excitat ion, and transient response occurs in the case of initial excitation and in the case of
external excitation other than the ones just mentioned . This external excitation is often called
transient excitation [2].

Resonance and Beating
Within a small frequency range where forcing frequency meets natural frequency
the forced vibration response tends to singularity phenomena since actual damp­
ing is considerably less than critical damping. However, the complete respon ses
appropriate to the following two singular frequency ratios will demonstrate, that
even for an undamped vibration those phenomena can not occur immediately.

Resonance. A singularity phenomenon occurs by coinciding of forcing frequency
with the undamped natural frequency , accordingly since the requen cy ratio is
equal to one. Thus,
the condition of resonance is defined by

w f = Wo 1], = w olwo = 1]0 = 1 (3.46a).

Resonance of a system in forced oscillation exists when any change, howe ver
small, in forcing frequency causes a decrease in a response of the system. Even
though Eq. (3.37a) shows that the response amplitude respecting the absence of
damping goes to infinity for any value of time a valid physical behaviour requires
that the amplitude takes time to grow . Analogous with the solution method con­
cerning free critically damped vibration , Eqs . (3.32b ,c), the solution at resonance
can be found as the product of a sinusoidal function with a function that depends
linearly on time.
For the oscillator starting at t = 0 from rest it follows :
Complete displacement response ofthe undamped system at resonance

Sges ( t) = ~ wotsinwot for t ~ 0 (3.46b)

normalized form by relating displacement s to static deflection Sstat

s(r)=lrsinr for r eO (3.46c).
Sstat 2

Beating. Beating of a system in forced oscillation exists when periodic variations
in the response amplitude arise resulting from the combination of two oscillations
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of slightly different frequencies. Consequently the appearance of a further phe­
nomenon is caused by a forcing frequency slightly different from undamped natu­
ral frequency, accordingly since the frequency ratio is close to one . Thus,
the condition ofbeating is defined by

lUf "" lUo 1]1 = lUf jlUo "" 1 (3047a).

The beats occur at the difference frequency, called
the beat frequency

LlWr = Iwo - wrl (3047b);

the beat frequency ratio:

Ll _ LlW f _Iwo -w rl _ ll - 1J d
1JI -~ - 2w

r
- -2- 0 < Ll1JI « 1 (3047c).

Complete displacement response ofthe undamped system beating

normalized form by relating displacement s to static deflection S Slat

s(T) I (si in r ) _ 2 1]1 + I . ( )--=--2- sm1]IT -smT =+--2COs-
2-Tsm

Ll1]IT
Sstat I - 1]1 1- 1]1 (3048a)

I 1]1 + I . ( )
= - Ll1]1 (I + 1]J)COS-2-T sm Ll1]I T ,

so that a sinusoidal beating will be stated

s(T) I .
- "" 2 Ll sm(Ll1]JT) COS(1]I T) (3048b).
Sstat , 1]1 1]1 • '

=A(T)

The harmonic function cos (1]1 T) has a period Tm = 2Tt/1]1 ' while the harmonic

function sin(Ll1]] T) has a period Ts =2Tt/Ll1]1 . Since Ll1]1 is a very small num­

ber, the harmonic function in the parentheses varies more rapidly than the har­
monic function forming their boundaries. The beats occur at any half period
T s /2 equal to n] /'),.1]1 .

Response Data Plotting. The time history of the displacement response at frequencies distin­
guished by resonance or beating are shown in the Appendix A.

Subjected to resonance the system attains infinite displacement , but not instantaneou sly, as
shown in Fig. A.6.

The occurance of beating characterized by a periodically time-varying amlitude is illustrated
in Fig. A.7.

3.1.3
Forced Response of a Single Degree-of-freedom System
to Complex Excitation. Phasor-response Analysis

For simplification of finding solutions of differential equations with periodic in­
puts the algebra of complex numbers is used . In case of a sinusoidal input the
trigonometric function is replaced by an exponential function with the imaginary
number jlUft. Thus, the sinusoidal forced or steady-state response may be ob-
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acceleration phasor £= -OJ~s e-jljl
= OJ~s e-j(ljI-lt)
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tained through consideration of a complex constituent alone , called the complex
excitation.

The concept of complex excitations and responses involves the advantages in
making evident the coherency between mathematically modelling and system be­
haviour by

- the geometric interpretation of forced responses representing vectors in the
complex plane (phasors);

- the derivation of frequency-response functions defining phasor ratios (com­
plexors).

The actual excitation is given by the simple harmonic (or sinusoidal) excitation,
Eq . (3.35) .

The complex excitation is an input having the real and imaginary parts :
A " ! A A

f(t)=FeJfJ)f == FCOSOJft +j FsinOJft (3.49)
~ ~

= Re [FejfJ)f!] =Im [FejfJ)fl]

Thus, the simple harmonic excitation can be written either in real notation or, us­
ing Euler's formula, Eq. (3.49) , as the real part of a complex notation indicated by
the symbol Re.

A solution of the differential equation, Eq . (3.1), under complex excitation
(forcing function), Eq. (3.49) :

n=2

L[s] == Z>vs(V)(t) = ms + cs + ks = FejfJ) f! (3.50)
v=o

will be found using the method of undetermined coefficients. A type of function is
assumed being congruent to that of the given complex excitation. That means, the
trial function is also a complex constituent replacing sinusoidal functions, Eq.
(3.36), applied in 3.1.2:

sp(t) = ~ejfJ) fl = Se-jljl ejfJ) f!; displacement phasor ~ = se-jljl

= sej(fJ) f1 -1jI)

• () • A J" fJ) fl
S t = JOJ s e .p f _ ,
- '-r;::-'

=s

s (t) = _OJ2SejfJ)f! .p f _ ,
- ~

=s

Phasor. A phasor is defined as a complex quantity the modulus (magnitude) of
which is the amplitude (or alternatively the r.m.s. value) al}d the argument (angle)
of which is the initial phase of a sinusoidal quantity .

Assuming a sinusoidal forced vibration the complex trial function ~p(t), Eq.

(3.51), is characterized by the displacement phasor i. whereas the time deriva­

tives ~p (t), ~p (t) are respectively marked by the velocity or the acceleration

phasor ~, ~.
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The supposed displacement phasor is distinguished by a displacement ampli­
tude s and an initial phase 'Po which is equal to the phase difference '1/1 using

s

zero-crossing excitation. The phase difference is indicated as a phase lag (phase
shift) - '1/1 '

The different motion phasors are related to oneanother by use of repeated mul­
tiplying by the differential factor jWf . The multiple of jWf constitutes the order

of the derivatives defining the pertinent motion variable quantity . The vector rep­
resentation in the complex plane illustrates the phasor relations by a counter­
clockwise rotation through the angle +1t/2 rad combined with a stretch in length

about the multiplier w. So, having a phase difference of +1t/2 rad respectively of

+1t rad the velocity phasor is in quadrature, or else the acceleration phasor in op­
position to the displacement phasor, Fig. 3.2.

Fig. 3.2. Complex representation of sinusoidal trial functions of motion by phasors: displace­
ment, velocity, and acceleration phasors

Phasor Method
The phasor representation of sinusoids is the most convenient method for obtain­
ing a particular solution of the nonhomogeneous differential equation to harmonic
excitation.

Instead of a trigonometric trial function the complex trial function, Eq. (3.51),
is substituted leading to a factored equation which expresses its dependency on
time only in terms of a complex exponential function as a multiplier

{-mwi~+jcWf~+k~}ejroft = Fe jrof l (3.52a) .

Being of like angular frequency W= wf and non-zero for all finite times

I t I < 00, the exponential factor can be cancelled on both sides of the equation .
Thus, the original differential equation will be converted into an algebraic equa­
tion being called
the phasor equation (vector equation) of the differential equation

-mwi~ + jCWf~ + k~ =F (3.52b).
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The only real problem is to calculate the amplitude and phase of the sinusoid as
a particular solution by solving an algebraic equation. This will be favourably
done by using phasors, and the method is called the phasor method.

The complex trial function, Eq. (3.51) , satisfies the equation of motion, Eq .
(3.1), if the complex solution function representing a forced response takes the
following complex sinusoidal quantity
the displacement response phasor i

~ F~ 1s=
k . 2
, + JCw~ - mWf ,

=G(jWf)

F 1

c 1+ j2S1JI -1J~
......... '-----v---'

=sstat =G(j1JI)fG(O)

(3.53)

(3.55a),

Complex System Parameter. Complex quantity which describes a system charac­
teristic by the relationship between excitation and forced vibration in complex
notation.
Frequency-response function G (jw) at W = wf termed

the displacement response complexor G (j W f)

G(jWf) =IG(jWf )lejarCG(jmf) = A(W f )e-jlv 1 = i f i: = i f i (3.54) .

Complexor. A complexor, introduced in electric circuit theory, is defined as a
complex quantity equal to the quotient of two phasors representing two sinusoidal
quantities of like angular frequency. In the actual case of a harmonic vibration the
complex ratio of the displacement response phasor i to the phasor of the excita-

tion force E. =i may be identified with the displacement response complexor

G(jwf)' whose modulus is equal to the amplitude (frequency-) response at

W = W f ' called
the displacement response factor, often referred to as amplitude ratio (gain)

IG(j W f )1= A ( W f ) = I 2\ 21 = IiI/Iii = sI i
~(k - mwr) + (Cwr) -

and whose argument equals the phase (frequency-) response at W = Wf ' called

the phase difference (phase shift)

G( ' ) cWf ~
arc JWf = -lfII = -arctan 2 = arc S - arc F

k - mWf (3.56) .

= -rpos - (-rpOF ) = -rpos; rpOF = 0

Single value of the frequency-response function in non-dimensional form

G(j!!!.L) IG(O) at !!!.L = 1]1
Wo I' Wo

being called the complex magnification factor

G(j1]1 ) f G(O) (= Yc ) = kifi: = kif i = if Sstat (3.55b)
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gives the characteristic response paramet ers by combining the normali zed dis­
placement amplitude, Eq. (3.38b), with the phase lag (phase shift), Eq. (3.40b), to
a sole com plex quant ity at frequency ratio '7 = '71 .

The particular solution of the nonhomogeneous differential equation describes
the forced vibration give n by the complex response:

s ( t) = F e jro r1 = FG (jOJ )e jro r1
P k' 2 r+ JCOJ r - mOJ r

caused by the complex excitation, Eq. (3.49).
The actual response, easily to calcul ate by the phasor method, can be written

either in real notation or as the real part of the complex notation:
Forced vibration (steady-state response)

sp (t) = Re[ sp (t)] = Re[ FG(jOJr )e
jro

r1
]

= FA(OJ r )Re[e j(ro rl-lJlJl] = FA(OJr )cos(OJrt - \V I)

Vector Representation of Sinusoids. The geometric interpretation of calculating
forced responses by phasor method can be gathered from the vector representation
in the complex plane , Fig . 3.3.

The complex sinusoids are represented by vectors rotatin g on circles of the ra­

dius For sat the same forcing angular velocity OJ r in the counterclockwise direc­

tion. Thu s, E.(t ) and ~p (t ) may be called time-varying (rotating) phasors. The

actual excitation and response can be interpreted geometrically by taking the pro­
jec tion on the real axis.

The displacement phasor lags the force phasor by \VI' that is the motion re-

sponse occurs after the force excitation has been applied (causal principle in real
systems affected by time delay).

For system analysis neither complex nor actual responses caused by sinusoidal
excitation are of decisive interest. For characterizing the sinusoidal steady-s tate
behaviour it is dispensable to describ e system variable quantities at a give n in­
stant, i.e., by their instantan eous value. The steady-state quantities being signifi­
cant of system variables are called the characteristic parameters. Those parame­
ters are given only by the magnitudes (amplitudes or r.m.s. values) and the rela­
tive phase angles (phase differences), and they are assigned to a single frequency,
the forcing (angular) frequency OJ = OJ r . Complex notation yet invol ves the ad-

vantage of combin ing both sinusoidal respon se parameters to one complex system
parameter, i.e., to the response phasor. Thus, in diagram representation not the
time-varying (rotating) phasors, in Fig. 3.3 marked by dotted lines, but the con­
stant (resting) phasors , in Fig. 3.3 marked by solid lines, are of use to be figured
for illustrat ing the forced or sinusoidal steady-state interrelations between the
system variables.

The phasor representation can be applied to mechanical components or ele­
ments by reiterating the relations defining idealized element laws, Eqs. (2.66) to
(2.68) . Using the phasor relations for the pertinent motion variable quantities, Eq .
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a

b

A

-s

jlm[E,§]

Re[E,§]

t =0 (time axis)

F,s

A

F(t)=Fcoswl

Fig. 3.3. Complex representation of sinusoidal response and excitation by time-varying (rotat­
ing) phasors and their projection on the real axis. a Phasor diagram; b time history

(3.51), the steady-state interrelat ion of parts (subsystems) can be illustrated by the
f orce phasor polygon balancing element forces and excitation force, Fig. 3.4.

Corresponding to the vector representation of the motion variable the deriva­
tive of which is of zero order continued to second order the elastic force phasor

i . is in phase, whereas the dampin g force phasor i, is in quadrature, respec-

tively the inertial force phasor E. m in opposition to the displacement response

phasor ~.

The fr equency-dependent change in phasor configurati on can easily be studied
by varying the forcing angular frequency wf. At very low frequencies compared

to the undamped natural frequency (resonance frequency ): W f « W o equivalent to

'II « I , the elastic force approximately equals the exciting force in amplitude

~ '" i , whereas at very high frequenc ies: w f » wo, or'II » I , the inertial force

clearly approaches the exciting force in amplitude Fm '" F .
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A. A.

E=F

Wf«Wo
Minor resonant
vibration

Wf» W o
Major resonant
vibration

Fig. 3.4. Phasor diagram of element forces and excitation force related to low respectively to
high forcing angular frequency

3.2
Representation of Mechanical Systems by Integral­
transformed Models (Transform Methods)

General Input-Output Relation by a linear Operator
The transmission system, commonly represented by a single-v ariable system,
e.g., a mechanical single degree-of-freedom system, relates one dependent output
variable v(t) to one independent input variable u(t) by the operator T, that de-

fines the functional dependence in the symbolic form :

v (t) =T [u(t)] (3.59)

signify ing the transmission behaviour of the system. The operator must satisfy the
properties on linearity (superposi tion principle), tirne-invariance (independence of
time-shifting), causality (response lags excitation), memory (the output variable
v et) at an arb itrary moment, t" dep end s on all previous value s of u(t) , from

- C1J to r.), Fig . 3.5.

The operator T cont ains in a compact form all the dynamic charac teristics of
the syste m and is usually given impli citly by functional depend ences, e.g., differ­
ential equ ations , that can be eva luated eith er theoret ically (by physical laws) or
determ ined experimentally (by measurements).

The calculus of linear fun ctional transf ormation or integral operators yield s a
method of computation that proves to be a specification of Eq. (3.59) concerning
linear systems.

Tu(t)--.....I'-__.....J~---.~v(t)

Fig. 3.5. Graphical symbol of the operator of a transmission system
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3.2.1
Periodic Vibration. Fourier Series Analysis

In the case of vibration drives or rotating drives being affected by disturbances of
different origin, the mechanical structure is frequently excited by more than one
sinusoid each having a frequency that may be an integral multiple of the forcing
fundamental frequency (multi-sinusoidal vibration). Hence, it exists a periodic
excitation F(t), that can be decomposed into sinusoids that are simple harmonics

with the periods Tn = Tin, where T is the fundamental period and n is the order,
accordingly with the (cyclic) frequencies In = nfi (harmonic analysis).

Superposition of the sinusoidal terms leads to the periodic excitation function
(harmonic synthesis), that approximates a periodic forcing function of arbitrary
shape by the appropriate Fourier series (Fourier expansion) with sufficient per­
formance (with respect to Gibb 's phenomenon, presupposing arbitrary periodic
function in compliance with Dirichlet's condition).

(3.60b)

(3 .61a),

(3.61b).

for n = 1,2,3 .. .

Fourier Series
A Fourier expansion of F(t) into a Fourier series is given as

ao CI) •

F(t)=-+I(ancoswnt+bnsmwnt) for n=I,2,3. .. (3 .60a)
2 n=1

where an and bn are the Fourier coefficients, or by combining them through goni ­
ometric addition theorems to form single terms as

CO ~ A
F ( t) =- + L.. Cn cos ( W n t - tpn )

2 n=1

with the Fourier amplitude of the nth harmonic (component)

cn = ~a~ + b~
and its Fourier phase angle,

tpn = arctan bn jan

Exponential Fourier Series. Following the theorem of Moivre from complex cal­
culus (or from complex- function theory considering the Fourier series as the

special form of a Laurent series by change of variable: z - Zo = ej~) a Fourier

expansion of F(t) into a complex Fourier series can be described as

for n = O,± I,± 2, ... (3.60c)
0=-00 n =-o:)

where cn is the complex Fourier coefficient of the value

(3.62a)

+.I
+x 2

C =_1_ f F(t)e-joon1dt=.l fF(t)e-j2xnt /Tdt
---E.. 21t T

-x _.I
2

with the(angular) frequency of the nth harmonic, called harmonic frequency

W n = nW1 = 2rcnjT (3.62b)
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being an integral multiple of the fundamental (angular) frequency
ml = 2n/T

defined by the product of the reciprocal of the fundamental period liT and the
factor 2n, whereat the multiple n constitutes the order of the harmonic.

For real-valued periodic quantities (actual excitations) F(t) the complex Fourier

coefficients of each order with opposite sign are complex conjugates: c n = c: .
- -

Thus, the complex Fourier series, Eq . (3 .60c), is completely equivalent to the
Fourier series in real notation, Eq . (3.60b), since the exponential factors associated

with each (angular) frequency occur in complex conjugate pairs: e+ jOln l , e- jOln t .

{

cl e
jOl ll

+ c2 e
j0l 2l

+ c3 e
j0l 3t

+ .. . }
F(t) = Co + - . -. - .

- +c_l e-j0l 11 + c_2 e'j0l2l + c_3 e·J0l 3t + .. .
(3 .62c)

'"= Co + I (~ejOlnt + c~ e,jOln 1)

n=\

so that, using Euler's formula, the Fourier series can be written as the real part of
the complex notation :

F(t) = Co + 2EI Re[~ejOlnl] for n = 1,2,3 , ... (3.62d).

Writing the Fourier coefficients in the polar form of complex conjugate numbers
the phasor representation is useful

Co
Co =Icol =­- - 2

. c ·
c~ =1 c

n
1ej(jln =....!!.. ej(jln

2

Finally it follows according to Eq . (3 .60b)

F( t) = leo 1+ 2 i: len IRe[ e j(Ol nt-i-arc c ; ) ] =~+i: en Re[ e j(
cont-(jln ) ]

n=1 2 n=1

(3 .63a)

(3.63b).

Vector Representation of Harmonics. The geometric interpretation of complex
Fourier series can be deduced from the vector representation in the complex
plane, Fig. 3.6.

Associated to the complex conjugate numbers ~n ' ~~, exists a phasor pair of

the modulus I £nI and the argument ± qJn' in Fig . 3.6 noted by the solid lines. The

double of the modulus is equal to the amplitude to the nth harmonic:

21 ~n 1=cn

The complex conjugate pair of exponential harmonics

C e jOl nl . c· e·jOl nl
-n ' -n

(3.63c) .

constituting the nth term of the complex Fourier series will be represented by a

phasor pair co- and counter-rotating on a circle of the radius I £nI at the same an­

gular velocity opposite in sign ± mn, in Fig. 3.6 noted by dotted lines.
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+jlfnl---::;,>o-+---

-Ifni

j+Wn

I
-jlfnl----=:~-t--::::;/ cne''''nl

fn -I
A

2Refn=2IfnlcOSiPn=CnCOSiPn

kc t A I
2Re[£,eJ n]=CnCOS(Wnt-iPn)

Fig. 3.6. Complex representation of the nth harmonic of a periodic quantity by time-varying
(rotating) phasors and their vectorial addition on the real axis

The nth harmonic or frequency component can be interpreted geometricalIy by
the resultant of the time-varying (rotating) phasor pair on the real axis folIowing
the paralIelogram law of vector additi on:

cn e j<Jl nt + c ~ e ·j <Jl n t = cn cos(w nt - 'Pn ) (3.63d).

The complex (or exponential ) Fourier series has an elegant mathematical form
and is useful in many theoretical developments.

The Fourier expansion of a periodic function described by repeated simple time
functions (ideal periodic excitations) is easily carri ed out by a complex Four ier
coefficient evaluation. In cases of periodic functions for which the repeated time­
history curve has an arbitrary shape the harmonic analysis whether in tabular form
or in graphic representation will be carried out with aid of numerical techniques.
The computer algorithm known as the Fast Fourier Tran sform (FFT) reduces con­
siderably the computati onal time.

Rectangular Shock Pulsating (pulse-train excitation). The periodic forcing func­
tion of repeated rectangular pulses , each of duration TO, Fig. 3.7, is defined as

2 vT + T O 2( v + I )T - T O
o for 2 < t < 2

FR,(t )= 2vT-To 2vT +TO v=O, ±I,±2, ... (3.64a)
Fo for 2 < t < 2
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FR1(t) Fo'to= FoiJT
+Fo

LL

LL
<?

0
I 'to 1

I- T .. ,- T .. I

Fig. 3.7. Periodic rectangular pulse train with even symmetry and non-zero average

with the parameters characterizing a pulsed quantity:
maximum height Fo ; single pulse duration,0

fundamental period T
duty cycle (or pulse control factor) [} = 'ofT

impulse (single pulse area) IR]T = Fo'o = Fo[} T;

and being of non-zero mean value:
-- IT
FRI (I) =T JFRI (/)d 1 = s Fo

o
Evaluation of the nth complex Fourier coefficient applying Eq. (3.62a) to the ideal
periodic excitation defined by Eq. (3.64a):

T to
+- +--

2 2

C = 1- JF, (t) e·jlll nidI = F, 1- Je·jlllnidl =
Rj n T RIoT
Ito
2 ""2

1 ejt () llln/ 2 - e- jtollln /2 _ [) . ('0 )= Fo-- . - 2Fo--sm -2 CU nr»; J 'OCUn

sin( '2
0

CU n ) __ (' )
Fo[} '0 = FR](I) ' si Tcu n for cu n = nco I

I-v-' T W o n=O,±1,±2, . ..
=FR1 (I)

the distinct values of which are expressed by the mean value FR I (I) multiplied by
a frequency function of the type (sin x) Ix that is commonly denoted by the sym­
bol si (si-function).

Replacing the specifying constant parameters cu n ' '0 by the equivalent para-

meters multiple n and duty cycle [} the coefficient will be modified into a term of
the frequency ratio cu n f CUI constituting the order by its integral number, called

harmonic number n

sin( [}1C~)
cRln = Fo[} "'I =FR (/).si([}1Cn) forn=O,±1,±2, ... (3.65c) .

-.-. [}1C~ I
"'I
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(3.66a).

(3.66b).= ±2,± 4,± 6, ...

=0for n

Taking a duty cycle of the particular value .9 = 1/2 (pulse duration equals half the
period) the evaluated Fourier coefficient represents the square wave with even
symmetry and non-zero average:

Fo '( 11: )
CRl n =2 s1 2"n

The Fourier amplitude of the nth harmonic (amplitude spectrum) is

~ { I

I 1
- cR ln - Fo ° for n = ±2v

C
R l n

- -2 - 2 ~I-nll
" for n = ±(2 v - I) = ± I, ± 3,± 5, ...

The Fourier phase angle (phase spectrum) is

{o f
{

± (2V- 2 ) = 0, ± 2, ± 4,...
or n =

arccRln =q1R\n = ±(4v-3)=±I,±5,±9, .

±11: forn= ±(4v-I)=±3,±7,±II, .

if v=I,2 ,3, .. .

(3.66c) .

Fourier Spectrum (line spectrum)
The description of the harmonic components (Fourier amplitudes) as a function of
frequenc y, given by the complex Fourier coeffic ient ~n' Eqs. (3.62a), (3.63a), de­

fines a Fourier spectrum the components of which only occur at discrete frequen­
cies w

n
given by the integral multiple s of the fundamental frequency w,. Thereb y,

a line spectrum is depicted . A Fourier spectrum representation requ ires a pair of
complementary spectra described either by spectra of the "amplitudes" of the real
and the imaginary part, or by a spectrum of the moduli , called amplitude spec­
trum, completed of a spectrum of the arguments, respecti vely called phase spec­
trum.

(3.67a).

Response Data Plotting. Those diagram pairs of Fourier spectra being exemplified for the
square wave are portrayed in Fig. A.8 of the Append ix A.

The Fourier expansion of periodic function s takes advantage of simplify ing the evaluation
due to symmetries. In the special case of a square wave possessing even symmetry the complex
spectrum of amplitudes is composed only of a real part having alternating sign, so that the
phase angle takes the alternating value 0 or ± n.

The envelope of the line spectrum is descr ibed by a decaying sinusoidal function, the so­
called si-function, signifying a periodic cut-off frequency function which coincides with the
spectral density (continuou s spectrum) appointed to the specifying rectangular pulse ERIO( OJ) ,

Eq. (3.71b), multiplied by the reciprocal of the fundam ental period, i.e., the fundamental fre­
quency I, =liT

-() .( ' 0 ) Fo .( 11: ) I T:' ( \
FR 1 t Sl 2 W = 2 Sl 2Wl W = T~ w)

The spectrum of the absolute amplitude values, plotted in Fig. A.9 of the Append ix A, is given
by the amplitude fun ction defined as

ICRl nj = FR1(t)lsi(In)l = ~o ~I~I=CR J O~ I~I (3.67b)
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that indicates the decrease of the harmonic amplitudes with increasi ng harmonic number (1st
order hyperbola).
The effec t of the varying parameter duty cycle (or pulse control factor) 9 on the amplitude
spectrum is shown in Fig. A. I0 of the Appendix A.

Whereas the maximum height Fo changes only the absolute amplitude values linearly, a
change in the pulse duration t: =°as well varies the absolute value s as shifts the spectrum

lines. Both variations do not affect the shape of the Fourier spectrum. The smaller the duty
cycle 9, i.e., the shorter the pulse duration, the smaller becomes the relative distance between
the spectrum lines, the distance coincides with the duty cycle if the discrete variable (.9n) is

chosen as abscissa.

The Fourier expansion of the square wave into the complex Fourier series

FR1(t ) = ~ I [ si (2!.n)J ej21mtlT for n = 0, ± I, ± 2, ... (3.64b)
~ n =- oo 2

=FR1( I)

can be converted into its real notat ion by combining conjugate complex pairs of
the same order n:

FR, ( /) ~ FR, (1++[Hl(/ I'+.-i'f')+(5;rr)(/I '+ei
';" ) +])

= FR 1(t) {I + 2n~1 [s i (~ n) Jco{2;n I)} for n= 1, 2, 3, . . . .

The first four terms of the Fourier series for the forcing function are then

FR 1(t) = ~ { I + ~[lcos( 2; I) - tcos( 6; I) + ~cose~1t I) - ...J}

c
R, O

+ CR o COS W1/ - CR 3 COSW3/ + CR ,COSWs I-' " (3.64c).2 1 I I "

---------
= ICRl ol=FR I ( I)

The Fourier series which represent s a square wave , defined by Eq . (3.64a) for
.9 = 112, only contains cos ine terms and possesses term s of odd multiple s, the
function F(t ) thus is said to have eve n and half- wave symmetry.

3.2.2
Non-periodic Vibration. The Fourier Integral

Shock exci tations are in effect short-tim e phenomena with a load ing and a restitu­
tion phase and with changes in position and velocity. Shock motions of finite du­
ration cannot be decomp osed into harm onic components, i.e., they cannot be de­
scribed by a discrete amplitude spectrum. Non-p eriodic functions of time are re­
lated to continuous functions of frequency .

Simularities in Fourier Series and Fourier Integral
One can consider the continuous spect rum as the limiting case of the discrete
spec trum with the distance between the discret e components, wI' approaching
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zero, and subsequently, the "period" of the aperiodic function tending towards
infinity.

Rewriting the complex Fourier series, Eq. (3.60c), and the nth Fourier coeffi­
cient , Eq. (3.62a) , as a discrete spectral function

F(r) = _1_ I ( 211: Cn)ejlCll nilw n
211: Cll n=- x wI
+I (3.68a)e:Cn) = l F(t)e-jClln1dt

I t ~_I
2

and finalIy forming the limits when WI becomes smalI as T becomes large
WI ~ 0 ; T ~ 00

(n~oo ; wn(=nw I)~w; ilw n(=W l)~dw; cn~O ; (211: ~nJ =(TCn)~feW))

(3.68b)
the Fourier series tends to the Fourier integral which normally exists for non­
periodic functions such as pulses of nonrepetitive nature. This limiting process
does not claim to be a rigorous derivation but serves as a heuristic deduction for
intuitively introducing the Fourier integral.

The Fourier Integral
The representation of the function F(t) by an integral of the following form de­
fines the
inverse Fourier transform; Fourier integral

F - 1[few)] = F(t) = 2111: Tf(w)ejIClldw (3.69a)
(0;; - 00

which is indicated by the symbol F l.
The transformation of the function F(t) into a function of the real variable w

defines the
Fourier transform

+0:>

F [F(t)] =few) = fF(t)e -jCll1dt
1=-0:>

(3.69b)

being indicated by the symbol F.
The spectral amplitudes of a non-periodic function F(t) may be represented by

E(w)dwas the contribution of the "harmonics" for an adequately smalI bandwidth
to to co + dr», Marked by the differential dw the spectral amplitudes are infini­
tesimalIy smalI quantities in analogy to the boundary value of the discrete fre­
quency component cn for T~ 00.

The Fourier transform E(w) having in general complex function values is a
function continuously dependent on the angular frequency to. This real variable is
also termed pulsatance. The F-transform can be interpreted as the excitation
spectral density. That is the first derivation of the associate spectral contribution

ffew )dw with respect to to.
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Definition of the Fourier Integral Equation. The integral operator , in this case
the Four ier transform , Eq. (3.69 b), is defined by:

I. The kernel of the transf ormation, here give n by KGm,t) = e- jrol being a func­

tion of the time t as the original variable , and of (j-tim es) the angular frequency co
as the subsidiary variable which is a real quant ity;
2. The limits of integra tion, here (-<Xl, +co) ranging from minu s infinity to plus

infinity (two-sided transform ation ), which co incide with the defin ition range of
time functions (original functions) permitted to exis t prior to t = 0 and to be unre­
strained in durati on (non-ca usal functions F(t) * 0 for t < 0 );

3. The class of time f unctions, here of forcing funct ions F(t) , to which the inte­

gral transformation given by Eqs. (3.69a,b) is true (existence theorem) [36], [37] .

As the integral transformation can be con sidered as a funct ional mapping, one
says that the function F(t) is being mapped (or imaged) from the original (time or
t-) dom ain onto the corresponding subsidiary (frequency or tV-) domain.

The transform E (m) and its inverse F(t) con stitute a Fourier transform pair.

The corresponding functi onal relation is called a correspondence

F(t ) 0 F • E(m) (3.69c)

being indicated by the corres pondence sign and the operator symbol F above it in
case of confusion with other forms of integral tran sform ation s.

Restriction of convergence (existence theorem). The Fourier transform exists
under restrictions similar to those of the nth Fourier coefficient (Dirichlet's condi­
tions), though the basic interval is extended on both sides to infinity, and
the absolute convergence criterion must be satisfied

+00

f IF (t)l dt < co
- 00

(3.70),

i.e., the time funct ion F( t) must be abso lutely integrable ove r the interval

( - co,+ co) (or the integral of the absolute time function must be of bounded varia­

tion). This describes the class of Fourier-transformable functions, which covers
only a part of time-varying functions occuring in practice, so not the frequently
used harmonic type of excitation function (sinusoidal excitation). For nearly any
forcing function approaching zero for large values of time in both directions, now
as before being of interest for analysing vibrating systems, the Fourier transform
exists. This proves true in particular for excitations involving shock and transient
vibrations (time-limited functions), consequently bringing shock pulses into focus.

It is relatively simple to determine E (w) from F(t) and vice versa if the inte­
grals can be transformed into series of rapid con vergence. Th is is the case for
time -limited functions or functions with frequency components belonging to a
finite band width. On condition that the ranges of the variables are bounded the
integral transfo rmation will be reduced to finite limits of the integral, that points at
the finite Fourier transform preferably applied in vibration analysis [40], [41].
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An exten sion of the class of Fourier-transformable time functions to periodic
excitations (time-unlimited sinusoidal and multi- sinusoidal functions) being im­
portant to steady-state analysis was achie ved by the theory of generalized func ­
tions or distributions according to Schwartz [38], [39]. By this the transformation
theorem s of the Fourier transformation can be extended to distributions of slow
growth, called tempered distributions, which satisfies the rather restrictive con­
vergence criterion of the Fourier transform. Tempered distributions are distribu­
tions that define a functional of bounded support or with testing functions of rapid
descent. Such a testing function alway s can be found for (time-unlimited) periodic
quantities.

(3.71a)
Itl>~

2

Itl < '2
0

Rectangular Shock Pulse (single-pulse excitation). The non-periodic forcing

function of a single rectangular pulse of duration,0 ' Fig . 3.8, is defined as

1
0 for

FR,o(t)=

Fo for

with the parameters characterizing a pulse :
maximum height Fo ; pulse duration '0

impul se (pulse area) IR \ 0 = Fo' 0 .

Evaluation of the Fouri er transform applying Eq. (3.69b) to the ideal shock pulse
defin ed by Eq. (3.7 1a):

to
+00 +2

FR\o( w )= f FR\o(t )e-jwtdt = Fo f e-jw1dt
- 00 'to

- 2

(3 .71b)

FR1o(~ Fo'to
-r; ,

lJ....0

0 t

~

Fig . 3.8. Rectangular pulse with even symmetry
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the continuous values of which are expressed by the impulse fRIOmultiplied by the
frequency si-function denoting the previously mentioned type (sin x)/x.

The absolute value of the Fourier spectrum (amplitude density spectrum) is

IFR,o(W)1 = AR,o(w) = Fo'olsi( '2
0

w)1 (3.72a) .

The phase angle of the Fourier spectrum (phase spectrum) is

1t

'0
1t

'0
1t

'0
1t

'0

< w < 2(2 v -l).E....; v = 0,+ 1,+2,...
'0

< to < 2(2v- 2).E....; v = -1,-2,.. .
'0

< w < 2(2v- 2).E....; v = 0,+ 1,+2,. . .
'0

< ro < 2(2v-l).E.... ; v = -1,-2, ...
'0

(3.72b).

Fourier Spectrum (continuous spectrum)
The description of the spectral density as a function of frequency , given by the
(complex) Fourier transform E (w) , Eq . (3.69b), defines a Fourier spectrum the
components of which are continuously distributed over a frequency range.
Thereby a continuous spectrum is depicted. A Fourier spectral density representa­
tion requ ires a pair of complementary spectra described by spectra of the real and
the imaginary part, alternatively by a spectrum of the absolute value, called am­
plitude density spectrum, completed with a spectrum of the Fourier phase angle,
respectively called phase spectrum .

Response Data Plotting. Tho se diagram pair s of Fourier spectra being exemplified for the
rectangular pulse are portrayed in Fig. A.II of the Appendix A.

In the special case of a rectangular pulse possessing even symmetry the amplitude density
spectrum is composed only of a real part having altern ating sign , so that the pha se angle takes
the alternating value 0 or ± n.

The Fourier spectrum of the absolute values plotted in Fig. A. 12 of the Appendix A, is given
by the amplitude density fun ction defined as

AR,o(w) = fR,olsi(t'ow)1 = Fo,oJS{ 11: :J1 (3 .73) .

This function to be considered as the generic spectrum typical for singl e force pulse s is
composed of a main lobe at low frequen cy followed by higher-frequency side-lobes whose

magnitudes decrease rapidly with frequ ency .

The effect of the varying parameters maximum height Foand pulse durat ion,0 on the am­

plitude den sity is shown in Fig . A.13 of the Appendix A.

While the maximum height Fochanges linearly the absolute values only, a change in pulse

duration,0 as well varies the absolute values as shifts the bandwidths of the frequency compo­

nents . Regarding the latter one of the outlined force spectrum characteristics it is obvious that
the finite usable bandwidth is inversely proportional to the pulse duration. For instan ce, in ex­
perimental techniques of impact testing this provides a useful means of concentrating the exci -
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tation energy below the maximum frequency of interest in order to make optimum use of the
dynamic range of the measurement system, [46].

Conclusions of the Fourier Spectrum Representation. In vibration system analy­
sis the following statements are of practical use:

The harmonic analysis The spectral analysis (decomposition)
permits through

the complex Fourier coefficients h
n

the Fourier transform F [F(t)]
of

periodic (multi-sinusoidal) non-periodic vibrations
vibrations mechanical shock,
e.g., pulse-train excitations e.g., single-pulse excitations

the representation by
a (discrete) complex a (continuous) complex
amplitude spectrum spectral density
(line spectrum) (continuous spectrum)

~(mn) or ~(n) f.(m) or f(:J .
In vibration analysis the Fourier spectrum representation has the particular signifi­
cation of a data processing causing a change in the original information by trans­
forming time functions. The determination of corresponding spectra is to be con­
sidered as a data reduction to the frequency domain by means of which time­
varying quantities (signals or data records) can be analysed by extracting from the
great many of instantaneous values (original time histories) an indicative set of
specific parameters related to the frequency components (characteristic frequency
parameters). Thus, the requirements on the dynamic system behaviour are more
efficiently specified (frequency-response specifications).

3.2.3
Fourier Transform Method. Frequency-response Analysis

The Fourier integral proves its usefulness not only for representing non-periodic
functions (shock excitations) by their corresponding Fourier spectrum but also for
determining analytic solutions of equations of motion. Frequency concepts used in
response calculation aim above all at specifying efficiently the frequency-response
characteristics required for mechanical systems. Looking at frequency components
transient responses (shock motions) are determined by calculation or measurement
(data processing).

In general the importance of applying integral transformation to linear system
analysis is based on modelling lumped parameter systems in the frequency do­
main by making use of algebraic equation calculus . Starting from time-domain
representation by the governing differential equation of motion one must be able
to express the transform of the derivatives in terms of the transform of the system
variable , e.g., of the displacement set) as the pertinent motion variable quantity.

Fourier transform of derivatives (differentiation theorem) . Let the Fourier
transform of a function set) exist and let s(t) ~ 0 as I t I ~ 00, then if
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(d/ d t )s (t ) exists

F[ ddt S(I)] = j w F[set )]

denoted as a transform pair se t), jw~(w) symbolica lly by the correspondence

s(t) 0 F • j w ~ (w) (3.74a),

in general, for higher derivatives

s( n) (t) 0 F • (jo)" ~(w) (3.74b)

(as long as s (t) is ntimes differentiable, and the absolute convergence criterion,

Eq . (3.70), for s(n) (t) is satisfied).

Fourier Transform Method
The solution of a differential equation by integral transformation, here by the Fou­
rier transformation, will be obtained by the following general steps, visualized as
the scheme of Fig. 3.9.

The fi rst step is to transform the differential equation with sand F as functions
of the one original variable t on both sides into an algebraic equation with sand F
being functions of a subsidiary variable, here of the real frequency variable to. By

a

Time
domain

1\
Solution of
homogeneous equation

n' nonhomogeneous equation I---

complete solution

.. 7

Differential equation Original solution
+ initial conditions (system response)
+ boundary conditions

I I ~'>

Frequency
domain

b

Transformation
(integral transform)

(F, L)

Subsidiary equation
(algebraic equation)

Inverse transformation
'(inverse integral transform)

(F'1, L'1
)

Transformed solution
(system response
transform)

Fig. 3.9. Solution scheme for ordinary linear differential equations . a Classical method;
b by means of transform method
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applying integral transform equations the initial conditions or boundary conditions
must be implied. Then , the algebraic equation, called subsidiary equation, can be
solved without much difficulty compared to the classical (or conventional)
method of solving differential equations. The last step consists in performing the
inverse transformation of the transformed solution (liJ-domain solution), here
implying an evaluation of the Fourier integral, Eq . (3.69a), yet for the function
~(m) , since an original solution (t-domain solution) is required. The case may be
whenever the time history of the pertinent motion response, e.g ., the actual
displacement response s(t), is of essential interest (real-time or time-response
analysis).

In vibration data analysis that applies especially to shock motions exemplified
later on by the time-response calculation referred to a rectangular shock pulse
(single-pulse excitation).

Nevertheless, for a lot of problems concerning system analysis and design the
transform of the unknown response, e.g., the displacement-response transform

,r(m), already provides a sufficient description of system behaviour by the corre­
sponding frequency components (spectral density or frequency-response analysis).

If still being of essential interest the inverse transformation possibly involves a
rather complicated step of calculation that may be facilitated by the use of tables
of transform pairs. They are readily available for a variety of basic functions . In
case, the evaluation may be carried out by numerical integration with respect to m,
or experimentally by use of signal-processing methods basing on the discrete

Fourier transform (DFT). Confining oneself to time-response calculations for ide­
alized types of transient excitation acting on lumped parameter systems the
evaluation of the inverse transform, here of the Fourier integral, reduces to a few
fundamental rules of mathematics being of use for practical applications, see
3.2.4, [36], [37], [40], [41].

Response to Rectangular Shock Pulse. The transformation of the differential
equation governing a forced mass-damper-spring system , Eq. (3.1), under a non­
periodic excitation (single -pulse excitation), Eq. (3.7la),

ms+cs+ks=F(t)=FR10(t) (3 .75)

by applying the Fourier transformation to both sides of the differential equation

mF[s] + c F[s] + kF[s] = F[FR1o(t)] (3.76a),

and using the differentiation theorem, Eq. (3.74b), successively for the first two
derivatives yields an algebraic equation of the transforms being called
the subsidiary equation of the differential equation

-mm2~(m) + jcm~(m) + k~(m) = FR1o(m) (3.76b).

Solving the algebraic equation with ease for ,r(m) the transformed solution is ob­
tained representing
the displacement-response transform ,r(m)

1
~(m)=sRIO(m)=. 2 FR10(m)=G(m)f.(m) (3.77a).

-- k+ Jcm-mm
v

=G(m)
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Fourier- (or to-tdomatn-response Characteristic. The input-output relation of the
compact type of an algebraic product, Eq. (3.77a), is one with considerable sig­
nificance in practical application that relates transform method with block dia­
gram representat ion, see 2.1. The response transform .\:(w) results from mult iply­
ing the excitation transform L R1 0(W) by a compl ex quantity termed

the displacement fr equency response G(w)

G( w ) = I 1- I = 1 I (3.78a).
( k - mw 2 ) + jcw m (w~ -w 2 )+j28w k (I-17 2 )+j2s17

Frequency-response Function. This response characteristic is defined as a fre­
quency-dependent property equal to the quotient of two Fourier transforms repre­
senting the actual response and the excitation functi on by their Fourier spectral
densities (continuous spectra), Eq. (3.79). Contrary to the complexor, defined in
3.1.3 as a quotient of phasors representing harmonic qua ntities which are related
to one single (forcing) frequency «o = wf ' the present quotient is a complex system

parameter varying in w over the definition range of the related Fourier transform s.
Being a property of linear dynamic systems the frequency-response function does
not depend on the type of excitation function. Excitati on can be a harmonic, ran­
dom, or a transient function of time. In the case of motion response by a dis­
placement the ratio of the displacement-response transform ~(w) to the transform

of the excitation force E. (w) is identified with

the displacement fr equency-response fun ction G(w)

G(w)=IG(w )le jarcG( W) = A(w )e- jlj/(W) = F[ s (t )] = ~ (w )
F[F(t )] f.(w )

whose modulus is equal with
the amplitude (f requency-) response (gain response)

IG ( w)!= A(w)= 1~(w)1
If.(w )1

and whose argument equals
the phase (frequency-) response

arc G(w) = -If/ (w) =arc~(w) - arcE.(w) (3.80b).

Time-response Characteristic. An important concept in linear system analysis is
to apply a pulse-type excitation idealized by approximating a rectangular pulse
shape of unit pulse area (impul se value of unity) and zero pulse duration, called
unit pulse. Dirac or delta "function", denoted 8( t ). Indeed, forcing function s
suddenly applied for a short time and then remo ved (short-duration force pulse s)
are often used as reference input (nominal shock pulse) in vibrations to check the
response of mechanical structures. For instance, translational impul sive forces can
be generated by use of an exc iter (impactor) which is not attached to the structure
under test. Approximating the unit pulse by an equ ivalent impact excitation cer­
tain system parameters may be experimentally determined by measuring the ac­
tual response to the unit pulse, i.e., by the response characteristic g (t) .
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In practice, impact measuments are associated with signal-processing methods
basing on the discrete Fourier transform (DFf). Used as an approximation of the
continuous Fourier transform the transformation of the response characteris­
tic g (t) thus may be performed by a digital Fourier transform system or analyser.

However, the pulse of infinitesimal durationc (t) containing equal energy at all

frequencies only possesses theoretical signification. The actual force pulse in con­
trast has a spectrum of finite usable bandwidth. With respect to the accuracy of
measurements the extension of usable frequency range must be fitted to the re­
sponse characteristics of the structure, that means, the force spectrum characteris­
tics of shock pulse excitations must be taken into consideration, [46].

Unit Pulse Response (weighting function). The response characteristic in the time
domain, in control theory called weighting function and denoted g(t), is related to
the characteristic in the frequency domain previously dealt with, the frequency­
response function G(w) . Both response characteristics constitute a Fourier trans­
form pair denoted by the correspondence

F- 1
G(w) • 0 get) (3.8Ia).

The evaluation performed by the Fourier integral for G(w)

g(t)=F-1[G(w)]= 21
T[ TG(w)ejIOldw

- 00

may be facilitated due to the causality principle:
g(t) == 0 for t < 0

(3.8Ib)

(3.82)

by applying the inverse Fourier cosine transformation

get) =.i7 G(w)costwdw (3.8Ic).
T[ 0

The unit pulse response, thus defined as the inverse Fourier transform of the fre­
quency-response function G(w), and termed in mathematical notation Green's
function

- accounts for the "weight" by which a value of the excitation preexistent at the
time r before the observation time t still takes effect on the response (related to
convolution or Duhamel's integral, Eq. (3.87a,b»);

- represents the general solution (complete response) of a system subjected to the
specific pulse type "unit pulse excitation" at t =0 with zero initial conditions,
Eq. (3.21);

- or else represents the free vibration (transient response) of a system starting
from the specific "non-zero initial conditions" defined by So =0; So =I, Eq.
(3.22), (3.23b);

- contains the system parameters in the time domain (transient-response specifi­
cations) to be received from a specific transient vibration at natural frequency,
i.e., from an "idealized force pulse-motion history".
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Unit pulse response of the underdamped system

g(t) = _I_e-ot sin m
d

! = le-t/Tr sin(2n L ) ; t > 0 (3.83a)
mmd 2nm Td

with the system parameters 0, t; md' r, see 3.1.1, Eqs . (3.3), (3.4) , and 3.1.2, Eqs.
(3.I9a), (3.19b) .

Substituting the non-dimensional time T, Eq. (3.2d) , then it follows
the normalized fo rm by relating unit pulse response g(t) to the reciprocal of the
indicial (or characteristic) mechanical impedance Ij.Jmk

.Jmkg(T) = R e - i;t sin(Jl- S-2 T) = ;~ e- t/ t r sin(2n ~) ; T ~ 0 (3.83b)

Unit pulse response of the overdamped system

get) = _1- e -i\t sin hA,t = _1- e- qv, sin h.lr : t :;:: 0 (3.84a)
mA, mA,

system parameters 0, t; A, see 3.1.1, Eqs. (3.3), (3.4) , and 3.1.2, Eqs. (3.19d);
the normalized form

.Jmkg(T) = R=te-i;tsinh(~S-2-IT)= R=te-t/t r sinh(~s-2-IT) ; T~O

(3.84b) .

Response Data Plotting. The time history unit pulse response is shown in Fig. A.17 of the Ap­
pendix A.

The effect of the system parameter damping ratio Son the time-response characteristic (unit
pulse response or weighting function g(t» is represented graphically in the normalized

form "J;;JZSIj (r) = "J;;JZg (r) by a set (or family) of time-history curves for various amounts

of damping . The damping effect on the vibratory nature of a structure is illustrated by the oscil­
latory transient state of motion for S< 1 (indicating an underdamped mechanical system) diffe­
ring apparently from the non-oscillatory transient state of motion for s> I (of an overdamped
system).

Response Calculation with the Fourier Transform
The remaining problem is to determine the system response in the time domain
(actual displacement response) s(t) corresponding to the transformed solution

(displacement-response transform) ~(m) already being calculated, Eq. (3.77a).

There are two approaches to perform the inverse transformation:

- to evaluate the Fourier integral by substituting the response transform ~(m)

for E( m) into the inversion formula of the (complex) Fourier transform, Eq.

(3.69a),

F - I [~(m)] = s(t) = 2In T~( to )e jtro dm (3.8Sa)
00= -00

(analytic continuation by extending the real (()-domain to the complex z-plane,
and applying integral theorems to the corresponding complex function) ;
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- to apply the convolution integral (superposition integral) to unit pulse response
g(t), Eqs. (3.83a), (3.84a), and to actual excitation F(t) , Eq. (3.71a) (integral
transformation in the t-domain) .

Convolution Approach. The latter approach is performed by a time response cal­
culation using a corresponding time-domain relation of equivalent significance to
the general algebraic product G(m)f(m) of Eq. (3.77a) representing the dis-

placement-response transform ~(m).

Inversion formula of algebraic product (time convolution theorem). Taking into
account the Fourier transform of derivatives (differentiation theorem) the alge­
braic multiplying of the complex system parameter varying in m, G(m), by the

excitation transform f(m) being differentiated W.r.t. frequency involves a trans­

form pair (differentiation theorem of the convolution integral) denoted by the
correspondence

~(m) = jm[ ~<:).f(m)]. F -1 0 :t [h(t):: F(t)] = set) (3.86a).

The derivative of the related time functions in brackets W.r.t. time implies an inte­
gral expression known as Duhamel's integral

s(t) = :t [h(t):: F(!)] = h(!):: F(t) + h(O+ )F(t) (3.86b).

Evaluation by parts results in a sum of two terms the prime of which is defined by

the convolution of the functions h(t) and F( t) called

convolution (or Faltung) integral (convolution theorem)
+00

set) = Jh(r)F(t - r)dr + h(O+)F(t)

or, equivalently , due to the given symmetry in h(t) and F(t)

(commutativity of convolution)
+00 •

s(t)= JF(r)h(t-r)dr+h(O+)F(t)
-00

(3.87a)

(3.87b).

To perform the integration given by the time convolution theorem, Eqs. (3.87a),
(3.87b) a few distinct system parameters related to the time-domain concept are to
be determined.

Time-response Characteristic. An important concept being an alternative to unit
pulse response in linear system analysis is to apply a step-type excitation idealized
by approximating a vertically fronted step of unit height (constant maximum
height of unity) and zero rise time, called unit step or Heaviside function uo(t) .

Forcing functions applied as a constant force excitation (simple step force) ex­
perimentally easier to realize than short-duration force pulses are a reference input
appropriate in case for vibrations to check the response of mechanical structures.
Thus, distinct system parameters may be determined by the actual response to the
unit step, i.e., by the response characteristic h(!).
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Unit Step Response. The response characteristic in the time domain , in control
theory denoted h( t) , is related to the time-respon se characteristic previously dealt

with, i.e., g(t) . With respect to the differentiation theorem the Fourier transform

pair of system response characteristics, Eq. (3.81a) , may be completed with the
transform of unit step response {[G(w)]I (jw)} = H. (w) , used as a system func-

tion being supplementary to the known complex system parameter G(w), de­

noted by the approximate corresponden ce

G(w) = jwH.(w) • F-
1

0 :th(t)=g(t) (3.88) .

Hence, the first derivative W.r.t. time of the unit step response, Ii(t), is equal to

the unit pulse response (weight ing function) g(t)

Ii(t) = g(t) (3.89a).

The unit step response, thus defined as the inverse transform of the system func­
tion given by H. (w) (being the conventional approximation to the exact transform

with the additional term1tG(O)8(w), i.e., which involves the delta functional at

w = 0 , [36], yet to be considered as a negligible spectral component)

represents the general solution (complete response) of a system subjected to the
specific step type "unit step excitation" at t = 0 with zero initial conditions;

- contains the system parameters in the time domain (transient-response specifi­
cations) to be determined from a specific transient vibration at natural fre­
quency, i.e., from an "idealized constant force-motion history".

Unit step response ofthe underdamped system in explicit form may be taken from
the primary response to a rectangular shock pulse, Eq. (3.104a), if deviding by the
maximum height Fo and shifting by half the pulse duration --r 0 /2 prior to O.
Response Data Plotting. The time history unit step response is shown in Fig. A.l8 of the Ap­
pend ix A.

The effect of the system parameter damping ratio t;on the time-response characteristic (unit
step respon se or Heaviside response function h(t» is repre sented graphically in the normalized

form kso(r) = kh(r) by a set (or family ) of time-history curve s for various amounts of

damping analogous to Fig. A.I? Contrary to the unit pulse response the present time-response
characteristic appro aching unity final value is particularly suited to state performance criteria
(transient-response specifications). In the oscillatory transient state of motion for t;< I the
maximum overshoot decreases, whereas the rise time increases with increasing damp ing ratio.
In the non-oscillatory transient state of motion for t;> I no more an overshoot does occur,
while the rise time continues grow ing on with increasing damping ratio.

Schedule of terms and symbols

initial value of unit step response : h(0+)

dummy variable in time (variable of integration): t

time of observation (running parameter) : t

convolution operator symbol : *
(with indicated limits of integration) .
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In view of mathematics the prime term, e.g. Eq . (3.87b) , represents an integral

transformation which has as its kernel h(t - r) and which transforms F(t) into

set) (linear operational calculus) to be conceived as a calculus for specifying the

operator T, see 3.2, Eq. (3.59), [39].
On account of physical interpretation the prime term being the convolution in­

tegral represents the delayed system response, on the other hand the incidental
term implies the immediate response proportional to the excitation F(t). Both

terms together form the total system response.
The convolution integrals in Eqs. (3.87a ,b) have infinite limits, which can

cause difficulties in the evaluation of the integrals. Such difficulties can be obvi­
ated if the infinite limits are replaced by finite ones .

Due to causality principle (real physical system, response lags excitation), Eq.
(3.82), the lower and higher limit of integration may be changed to 0 respectively
t (as the integral is equal to zero for all earlier t: < t ).

Hence, it follows alternately
<>:; •

fh(r)F(t - r)dr
'[=0

set) = or
t •

fF(r)h(t - r)dr
t=-C()

(3.90a,b) ,

(3.91a,b) .

(3.89c) .

only causal excitation functions (starting at

for short symbolically

{

h(r): F(t) }

s (t) = ~{. + h(O+)F(t)

F(t) * h(t)
- <>:;

Furthermore, following Eq. (3 .89a), h(t ) may be replaced by g(t).

For mechanical systems being passive and predominated by inertia the frequency­
response function G( m) is a rational function, the numerator polynomial of

which B(m) is of lower order m than the denominator polynomial H(m) being

of order n, whereby the common case is indicated:
G(m) = B(m)/H(m) m < n (3.89b)

thus , the initial value of unit step response vanishes (Abel's or initial-value theo­
rem , loosely phrased, state G(m) being asymptotic for large to, then h(t) is zero

at t = 0):

h(O+)= G(oo)= 0

When additionally considering
t = 0);

F(t) = 0 for t < 0 (3 .93)

the convolution theorem, Eq. (3.86a), reduces to the algebraic product of fre­
quency-response characteristic and excitation transform corresponding with the
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convolution product of time-response characteristic and actual excitation. This
relation constitutes the standard transform pair, denoted by the
correspondence

~(w) = G(w) . E.(w) . F -
1

0 get) ~ F (t ) = s(t ) (3.92a)
o

(The limits of integration fitted toboundedness of observation time can be
dropped as the convolution symbol is unique).
The convolution integral in detail

I I

s( t ) = f g(r)F(t-r )dr= f F (r)g(t- r )dr (3.92b)

corresponds formally to the convolution theorem of the Laplace-transformation,
3.2.8, Eq. (3.153), for the passive system with dominant inertia .

According to the alternate form of convolution integral the excitation is a func­
tion of t: and the unit pulse response is a function of t - r ; that is, the weighting
function is shifted. It is pointed out that the same result follows from the excita­
tion being shifted instead of the unit pulse response.

For a system function with non-dominant inertia so that B(w) and H(w) are

of equal order m = n , Eq. (3.90a,b) has to be treated not as a conventional but as
a generalized convolution product with which the first time derivat ive of unit step
response is defined by the regular generalized function h'(t ) , Eq. (3.94), involv­

ing a (Dirac) delta function al c5( t ):

h'(t) = hO (t ) + h(O+)c5 (t) ; h'(t) = get ) (3.94).

The convolution integral is thus not defined in the analytical (Riemann) sense,
therefore the convolution theorem has been extended to generalized functions
(distributions) [36], [38], [39].

Response Data Plotting. To point out the meaning of the convolution therorem it may be il­
lustrated by both the graphical interpretation and the approximate eva luation.

Graphical interpretation of the convolution integral. The convolution consists of reflecting

("folding") g(r) in (respective about) the ordinate to g(-r ) , shifting g(-r) by the time

interval of observation t to g(t - r ) , and an integration of the product g(t - r)F(r) be­

tween the limits 0 and t, as shown in Fig. A.14 of Appendi x A.

Exempli fied for an unit ramp excitation ul (r) , Eq. (3.174), and an underdamped weighting

function g(r), Eq. (3.83a), the shaded area is equal to the value of unit ramp response set)

at a particular instant t. Any instantaneous value of system response S (t) depends on the ex­

citation value F(r) at the same instant t: = t , and at all preceding instant s t: ~ t , multiplied

("weighted") by the weight ing function that is shifted by the observation time t, i.e., by

g(t - r ) . The equivalence of both shaded areas whether the weighting funct ion or the excita­
tion function has been shifted accordin g to the integral, Eq. (3.92b), demonstrates the symmetry
of integral transformat ion in F(t) and g(t) (commutativity of convolution).

Approximate evaluation of the convolution integral. In order to visualize the meaning of the
convolution transformat ion it is possible to derive the continuous-time respon ses of linear sys­
tems by sequences of sample values. At first an actual force history is approximated by a series
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of pulses of equally short duration respectively by a series of steps of small height, as shown in
Fig. A.15 and A.16 of the Appendix A.

The former approximation bases on Eq. (3.86b), the latter one on the commutative form us-

ing the first derivative F( t) of the excitation function F( t)

s(t)= :t[F(t):: h(t)]=ht):: h(t)+F(-oo)h(oo) (3.86c).

Considering a single rectangular pulse of the impulse f( r u )ll t: applied at t = t:u an arbi­

trary input function may be regarded as
a series ofn rectangular pulses (pulse approximation):

(3.95a)

becoming in the limit , as II t:~ 0, t:n = t, an integral or continuous-time representation of

f(t) by delta pulses . Looking at a single rectangular step function of the maximum height

llf( t:u) applied at t = t:u an arbitrary input function may be regarded as

a series ofn rectangular steps (step approximation):

t n llf(r ) t d
f(t)= lim:L II u uo(t-ru)llr= f -d f(r)uo(t-r)dr (3.95b)

<1t--.o r =0 t: t
u 1'=0

becoming in the limit, as II t:~ 0, t:n = t, an alternative continuous-time representation of

f(t) by step functions . The response to unit impulse at t <ru is the weighting function

delayed by the time interval t, that is g(t - t:u ) . Hence, the single pulse contributes to the

output an amount given by

Yu(t)=f(rU)YrM(t-rU) '

The sum of n delta pulse responses is approximately equal to the output caused by the arbitrary

input. Letting II t:~ 0, r n = t, and replacing the summation by integration, the approximate

output results in
the continuous-time system response y( t) by delta pulse responses:

tnt

y(t)= lim :Lf(ru)Yr (t-ru)llr= ff(t)yo(t-r)dr=f(t)*g(t) (3.96a),
<1t--.o 't =0 M _ '--,,---'

" t=O =g(t-r)

respectively in that by rectangular step responses :

t n !If( t: ) t d •
y(t)=lim L ~Yu (t-ru)llr= f -d f(r)yu (t-r)dr=f(t)*h(t) (3.96b).

M--.O r =0 L1 r 0 _ t: ~
u t=O =h(t-r)

Together with the continuous-time approximation by sequences of singularity functions a deri­
vation of the convolution integral is performed according to Eqs . (3lJl6c) and (3.86b).

3.2.4
System Response to Transient Excitation. Pulse-type Functions

The Fourier transform method will be utilized for determining the system re­
sponse in the time domain as follows. Taking up the non-periodic forcing function
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of pulse-type as a transient excitation applied to the mass-damper-spring system
the inverse Fourier transformation will be performed by both of the approaches
pointed out before, that is the inversion formula and the convolution integral. In
any case the calculation of the unknown time response will be carried out by vir­
tue of the frequency- , or else the time-response characteristic, both being known
with reference to the already calculated frequency-response function G(cv), re­

spectively the unit pulse response g(t), Eqs. (3.78a), (3.83a), (3.84a) .

(3.77b).=G(cv)

I F ~(ejtOo) /2 _ e- jt oO) /2)
(cv~ - cv2

) + j2Jcv 0 JCV
'-------,,----~

Inversion Formula Approach
Writing the displacement-response transform ~(cv) in 3,2.3, Eq. (3.77a), in an

explicit form by use of the known Fourier transform of the rectangular shock
pulse, Eq. (3.71b) , the transformed solution of the differential equation, Eq.
(3.75), results in

cv2

~(cv) =SRI 0 (z») =-t

Focv~ e jt oO) /2 _ e - jtoO) /2

k jcv[ (cv~ _ cv2
) + j2Jcv]

Applying the inverse Fourier transform, Eq. (3.69a), to the response transform
~(cv) by substituting Eq. (3.77b) for f..(cv) the inversion formula of the complex

Fourier transform, Eq. (3.85a), yields the explicit form

F 2 +0 0 ' / '/ocvo I J eJtoO) 2 - e-Jto O) 2 '10)

s(t)=sR\o(t)=-k- 21t . [( 2 2) '25: r dcv (3.85b).
-00 Jcv CV o - cv + J uCV

To evaluate the Fourier integral being a real integral, for which the interval of in­
tegration is not finite, thus denoting an improper integral, the technique of ana­
lytic continuation is commonly used. By introducing the complex variable z

Z = co + jy (3.97)

the response transform ~(cv) will be continued over all parts of the complex z­

plane in which ~ (z) is analytic. Thus , the theory of analytic functions (complex

variable functions) can be utilized by means of theorems for complex integration,
Complex line integrals being integrated along a closed path in the z-plane are
known as contour integrals. Cauchy's integral theorem enables to evaluate that
type of complex integral. Analytic functions are, to a certain extent, essentially
characterized by their singularities. Thus, if the transform ~ (z) is analytic on and
inside a contour C, except at a finite number n of interiour isolated singularities
zk' then the value of the contour integral is given by 21tjtimes the sum of the

residues of the integrand at those points. This result is known as
Cauchy's residue theorem:

+00 n

21ts(t)= J~(cv)ejtO)dcv=21tjIRes[~(z)ejlz] for t>O (3.98) .
-00 k=l Zk
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+=+
+00

I

The calculus of residues is useful in evaluating certain classes of complicated real
integrals . Indeed, first the real improper integral defined for integrating along the
real axis has to be completed in a corresponding contour integral. The path of
integration thus will be closed around a contour by tracing a real axis segment
from - R to + R and a semicircle in the counterclockwise direction in the upper
half z-plane , and let R ~ 00 .

The complete contour integral can be written as the sum of two parts of line
integrals

-00 L.....J

=0

(3.18a)

for t > 0lim ejtz = lim [ejt(w+jy)] = lim [e-ytejIW] = 0
z~oo y~oo y~oo

The frequency-response function G(z) remains finite (is analytic) everywhere

except at isolated singular points, called singularities or poles, such poles occur­
ing where the denominator polynomial vanishes. The "singularities of the system"
are identical with the known roots (solutions) or eigenvalues, compared to Eq.
(3.15), consisting in case of less-than-critical damping in two first-order or simple
poles (a pair of complex conjugate roots), denoting the system-poles zl.2:

z = j.s..... ± ~.i _( .s.....) 2
1,2 2m m \2m

=j8±~m~ _8 2 =Km o ±moR"
lying for real (causal) systems in the upper half-plane, Fig. 3.10.

The excitation transform ER10 (z) being undefined at the "singularity of the

excitation" Z3 = 0 can suitably be defined by approaching the constant l'0 as
z~O:

The first part is the integral to start with when R ~ 00 . The second one tends
to zero as R ~ 00, being a condition (Jordan's lemma) to be proved in the indi­
vidual case for validating the complex integration.

The proof follows separately for different ranges of the variable time parameter
t being of positive or negative value . Therefore it is thought proper to divide the
actual displacement response (shock-motion history) into the response which oc­
curs during the time in which the shock acts, called the initial or primary response
sInit(I) and the response which occurs during the free vibration existing after the

shock has terminated, and that is called the residual response sRes (I) .

Residual Response. For the residual shock period t > '0/2 the contour is closed

owing to only positive values of time t > 0 in the upper half-plane. Thus, the inte­

grand with particular regard to its kernel function ejtz converges to zero let
z ~ 00 :
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jlmz=jy

c

Rez=w

(3.99).

(3.78b).

(3.100a)

Fig. 3.10. Complex z-plane with a closed curve C surrounding the system-poles z1.2 in the up­
per half-plane for a contour integration evaluating the inversion formula over the residual shock
period

As a result the function ER , 0 (z) becomes analytic at the origin coinciding with

an excitation-pole z3 = 0 that can be removed, denoting a removable singularity.

For the integrand fez) thus being analytic on the contour C with the two sim­

ple poles zk = zl,2 inside the contour the value of the corresponding contour inte­

gral follows from the sum taken over the residues of f(z), that is the response

transform ~R, o(z) multiplied by the kernel ej1z, at z = Zt ,2' denoted by

Res(zl,2) = R1,2 .

In view of mathematics the residue Res(zk) is the coefficient Ak,_1 of

(z - Zk ) -I in the corresponding Laurent series expansion of f (z), in powers of

z - zk ' which is valid near the center of convergence z = zk . In the case of a

simple pole zk the residue by evaluating the limit as z ~ zk is obtained as

Resf(z) = Rk = lim (z-zk)f(z) = [(z-zk)f(z)]z=z
Z=Zk z..... zk k

Before carrying out the residue calculus the denominator polynomial of the
frequency-response function G(z) should be factored uniquely into the linear

factors (z - zk)' where zk are the known roots (eigenvalues) of the characteristic

equation for k =1, ... ,n ; n =2

G(z) = 1- 1 _ w ~ -;--_--,-':-_----,-
m (w6 _zz)+ j20z z (z-z,)(z-zz)

Thus, by use of factoring process, Eq . (3.78b), the residues R) and R2 are easily
obtained from Eqs. (3.18a), (3.85b), (3.99) :

R, =lim [(Z-Z,)SR o(z)ejIZ]=FOk~~[-(Z-Z') e(j!f-z _)e(-j!f-z ej1Z]
z..... z, -'- J z z-z, z-zz)

z=z,
. '0 . '0 . '0 ( . , . '0 .Fw z J2 z1 -J 2z) . Fw z J2Ju+Wd) -J2(JO+Wd) . .

__0_0 e -e eJ1Z, =__0_0 e -e eJ1(JO+Wd)
kj Z\(ZI-ZZ) kj 2(jo+wd)Wd
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(3.100b)
so that, according to Eq. (3.98):

s (t )='[R+R ]= ' Fow~ {0e5_W)[i!f{jO+Wd l_e-j'2° (jO+Wd l]e jt(iO+Wdl
Res J I 2 J2 'k ( ~2 2) dJ Wd u +Wd

'------.r----J

=w ij

( . ~+ )[ /2° w(jo-w dl - j '2° (jo-wd l ] jt(iO-w dl}- JU Wd e -e e

(3.1OIa)
and by summarizing the exponential functions of a complex and a conjugate
number to circular functions of a real number the sum of residues finally results
m:
Residual response of the underdamped system

I (-O<t-!.Q.l{ [ '0] s [ . '0]}sRes (t )= Fo --1-. e 2 cos Wd(t- 2 ) +w-;;- smwd(t-2)

=G(O)
'------.r----J

=sstat

-e- o<t+'20l{COs[Wd(t+ ';)]+ :d sin[Wd(t+ ';)]}); t> '; .

Introducing the non-dimensional frequency parameter:

, '=wo'o =21tr oI To
and the non-dimensional time (excitation time) by modifying Eq . (3.2d):

,I,' = w otl(wo'o)= tl,o

where '0 is the pulse duration, and wo, To are system parameters,

(3.6a), (3.7), then it follow s
the normalized form by relating displacement s to static deflection Sstat

(3.1OIc)
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and when S = 0 , the residual response ofthe undamped system

SRes(*) = COS[2rc(~)(-t _1)] _COS[2rc(~)(-t +1)]
Sstat To LO 2 To LO 2

= [2sin(11 ~:)l sin[211(~:) :J; :0 > t (3.101d)

'--v------'

=SRes l Sstat

where the maximum value of the specified response is given by
the residual response amplitude factor

(SRes/Sstat) = 2sin(rcLo/To) (3.l02a).

This response parameter and thus the residual response of the undamped system
vanishes for integer multiples of the period ratio Lo/To(interference phenome-

non).

Primary Response. For the initial shock period - L 0/2 < t < + L 0/2 the inte­

grand does not behave suitably at infinity because of time taking not only positive
but also negative values t < O. Accordingly, the evaluation of the Fourier integral ,
Eq. (3.85b), will be performed in two parts enclosing separately the upper half­
plane for the first part and the lower half-plane for the second part, Fig. 3.11.

Now, however, the integrand of each part having a complex exponential in the
numerator includes a pole at the origin, denoting the excitation-pole z3 = O. To

avoid the integration through a singularity an intended contour should be traced
by introducing a small semicircle of radius r with center at the singular point. It
may be reserved to a rather sophisticated proof to show that the integrand is
bounded in absolute value as r ~ 0 [36], [37], [41]:

F a/ {+a:> j(t + '~) )00 +a:> j(t- '2° )00 }
SInit(t)=_o_o_1_ f e dm- f e dm (3.85c).

k 2rc -a:>jm[(m~ _m2)+ j2om] -a:>jm[(m~ _m2)+ j2om]

jlmz=jy jlmz=jy

c

Fig. 3.11. Complex z-plane with indented closed curves surrounding either the system-poles

Zl.2and the excitation-pole Z3 =0 in the upper half-plane or enclosing the lower half-plane for a
contour integration evaluating over the initial shock period
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(3.103a)

(3.103b)

(3.103c)
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Thus there will be no contribution from the second integral as its contour does not
enclose any pole .

According to Eq. (3.98) the contribution from the first integral is given by the
sum of the residues at the excitation-pole Z3and at the two system-poles zl.2"

By use of factoring process, Eq. (3.78b), the residues R" Rz' and R3 are easily
obtained from Eqs. (3.18a), (3.85c), (3.99):

F. ev 2 [ j(t + '~)z ]
R1= lim[(z-z\)I1(z)]=---.L-

k
.0 - (z-zl) ( e )(

Z-H( J Z z-zl z-zz)
Z=ZI

z .( '0)Foevo eJ t+T ZI
---

kj z\(z\ -zz)

F. ev Z [ j(t + '~) )z ]
Rz = lim [(z-zz)I1(z)]=---.L-

k
.o -(z-zz) ( e )(

Z-7Zz J Z Z - Z\ Z - zz)
Z=Zz

F. to z j(t + 'zo )Zz
o 0 -ce:....,,-__.,-
kj zZ(zl -zz)

F. ev Z [ j (t+ '~)z ]
R3 = lim [z1\(z )] =~ - z ----,--~e'______:__,_____....,..

Z-7 Z3 kJ z(z - zl )(z - zz) Z=Z3

Foev~ I
=-~ z\zZ

so that, according to Eq. (3.98), and by summarizing the exponential functions to
circular functions the sum of the residues finally results in:
Primary response of the underdamped system

normalized fo rm

(3.104b)

I t I--<-<-
2 '0 2
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and when S = 0 , the primary response ofthe undamped system

SInit(t) =l-COS[21t(~)(-t+1)]= 2 . sin2[1t(~)(_t+1)] ;
Sstat To r 0 2 ~ To t:0 2

=SInit / Sstat (3.104c)

_l <_t_ <l
2 ro 2

where the maximum value of the specified response is given by
the primary response amplitude factor

(SInit/Sstat) = 2 (3.102b)

being a constant for all period ratios ro/To .

Convolution Approach
Due to a excitation function starting prior to t =0 (non-causal function
F(t) * 0 for t < 0) the convolution integral in the limits of Eq. (3.90a,b) holds

true, whereat the incidental term implying the immediate response will be dropped
because of vanishing initial value of the unit step response, Eq. (3.89c), for the
proper case of G(w) with m < n (dominant inertia), Eq. (3.89b) , so that:

t t

SRtO(t) = f FR o(r)g(t - r)dr = FR o(t) * get)
t I - 00

1=-00

(3.105)

Writing the actual displacement response SRI o(t), Eq. (3.105) , in an explicit form

by use of the actual rectangular shock pulse defined over specified time intervals,
Eq. (3.71a), the evaluation of the convolution integral results in
the primary response of the system

'",;,(I)" F:~!;~g(t-,)d, =-~:,!~,(U)dU =Fo"i~(U)dU=FO[{t+ ';)-h(O')] ;
2 2

where h(O+) = 0 (3.106)

which equals the response to a constant force excitation (simple step force) , coin­
cident with Fotimes the unit step response shifted by half the pulse duration

-ro/2 prior to t = 0, identical with Eq. (3.104a) .

By use of integration term by term, the first one over the initial shock period
from - t: 0/2 to + t:0/2 , and the second one over the residual shock period

from + t:0/2 to t, last substituting the unit pulse response, Eq. (3.83a) , the convo ­

lution integral becomes
the residual response ofthe underdamped system

SRes(t)=FO{+;2: ._I_e-O(t-1)sin[ Wd (t-r)]d r+ J0 . _1-e-O(I-1)sin[ W d (t -r)]dr}
_.!.Q. mWd 1=+.!.Q. mWd

2 , 2 ,

='0
(3.107)
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where the second integral does not contribute because of a forcing function being
zero over the residual period. Only the integration over the initial period yields a
contribution by the first definite integral being evaluated by integration by parts

SRes( t) =FOkW ~ ~ ~ 2Ie-O(t- Tl{cos [Wd(t- , )]+L sin[Wd( t- ,)]}I+T ; t >~
W d W d+8 W d _-.IlL 2

2

with the result identical to Eq. (3.101b).

Response Data Plotting. The actual displacement response (shock-motion history) s et) as the

result of time-response calcul ation is shown in Fig. A.19 and A.20 of the Appendix A.
The effect of the system parameter damping ratio t; on vibratory motion is represented

graphically for a mechanical system being subjected to a rectangular shock pulse, and is por­
trayed as for selected fractions of critical damping as for two different values of the period ra­

tio ' 0/To . In the response of systems to a shock excitation several kinds of maximum values

are of considerable physical significance. The residual response amplitude SRes is the ampli­

tude of the free vibration after the removal of a constant force excitation. The maximax re­

sponse sMax is the maximum value of the greatest magnitude attained at any time during the

shock motion. The maximax response may occur either within the durat ion of the pulse or dur­
ing the residual vibration era. In the latter case the maximax response is equal to the residual
response amplitude. This is generally true in the case of short-duration pulses, e.g., for the

small period ratio of '0 /To = 1/2 ,delivering the response curve in Fig. A.19.

To the contrary the maximax response occurs in the initial vibration era, e.g., for the large

period ratio,0/To = 2 . Being casually an integer multiple, the residual response thus van­

ishes for the undamped system, see Fig. A.20.

Shock Response Spectrum
Measurement of shock-motion history is not useful directly for engineering pur­
poses. A method of reducing the time history is then necessary depending upon
the purpose for which the data will be used. There are several concepts of data
reduction. A description in terms of the effect on structures when the shock acts as
a specified excitation is designated reduction to the response domain. The usual
concept of the shock response spectrum is based upon the single degree-of­
freedom system, commonl y considered linear and undamped. With only two sys­
tem parameters involved, the (undamped) natural frequency Wo and the damping

ratio s: it is feasible to obtain from the shock measurement a systematic presenta­
tion of the response maxima of many simple structure s. The shock response spec­
trum is a graphical presentation of a selected quantity in the response. As one of
various characteristics the response peaks may be depicted and plotted as a func­
tion of a non-dimensional frequency parameter. For that commonly the ratio of
pulse duration to natural period is employed, called the period ratio To/To .

Respon se Data Plotting. The shock response spectrum calculated form the time history of the

total displacement response s lnit(t ), sRes(t) to a rectangular pulse of force FR 10(t) is ex-

pressed in terms of the equivalent static displacement Sstat for the undamped respond ing

structure, (; = 0 , Eqs. (3.lOld), ( 1.104c) , shown in Fig. A.2 1 of the Appendix A.
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The response spectrum representation is subdivided into a primary shock spectrum being a

straight line of value 2 for t: 0/To > 1/2 , and a residual shock spectrum forming a half-sine

range vanishing at integer multiples of t:0/ To (interference phenomena), both depicted as solid

lines. The maximax shock spectrum, depicted as dotted line, either coincides with the primary
spectrum or with the residual spectrum. The latter case, however, is reserved to short-duration

pulses given by r 0/To < 1/2 .
To attenuate the transmission of shock the admissable range of period ratios is limited to

t:0/To < 1/6 .Provided that a mechanical structure has to be protected from a series of shock

forces of given pulse duration t 0 a shock isolation aims at an appropriate elongation of the

natural period To by element parameter variations (tuning of energy storage elements).

Shock Response Spectrum and Fourier Spectrum in Contrast. A description of
the shock in terms of its inherent properties, viz., of the amplitudes and phase re­
lations of its frequency components , is given by a continuous function of fre­
quency , and the composite function is evaluated by integration . Thus, the Fourier
spectrum may be considered as a capable data reduction to the frequency domain
to represent the time history of shock excitations by their corresponding spectral
densities. Moreover , the Fourier spectrum is an important aid used in frequency­
domain analysis. Measurements involving signal -processing methods base on the
discrete Fourier transform (DFf). For instance, the impact-excitation technique
has become a popular method to determine frequency-response functions of
structures (mobility or dynamic compliance measurements), [46]. For this purpose
the actual force pulse and the transient motion response are simultaneously meas­
ured. Computing for each of both signals the discrete Fourier transform and
forming the response ratio of Fourier spectra the complex system parameter
G(m) thus will be obtained in conformity with Eq. (3.79), see 3.2.3..

In contrast the shock response spectrum describes the effect of the shock upon a
structure in terms of peak responses of shock vibrations. Thus, the time history of
a shock cannot be determined from the knowledge of the peak responses , i.e., the
data reduction to the response domain by calculation of peak responses is an irre­
versible operation. Further relations see references, e.g., [42].

3.2.5
Random Vibration. Data Processing

Collecting records of vibrations (time histories) and extracting informations from
those records for practical purposes of vibration data analysis is not only referred
to non-periodic vibrations (shock motions) . Data processing much more includes
the handling and reduction of original informations extracted from stochastic time
histories (random vibrations) the associate time functions of which (random proc­
ess) are characterized through statistical properties.

Types of Vibration
The two principal categories of vibrations differ from oneanother whether a par­
ticular vibration is deterministic or random.
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Deterministic Vibration. The class of vibrations for which the instantaneous value
of the vibration at a specified time is determined precisely by its time history is
called deterministic. The value of a deterministic function , e.g., a time-varying
function of previously treated periodic or transient type (periodic respectively
non-periodic vibration) can be predicted from knowledge of its behaviour at pre­
vious times.

Random Vibration. The class of vibrations for which the instantaneous value of
the vibration at a specified time cannot be determined by its time history is desig­
nated as random. Though the magnitude of a random vibration cannot be pre­
dicted for any given instant of time, data analysis aims at specifying the probabil­
ity that the magnitude of an expected motion variable is within a given range .

Examples of random functions are the noise intensity caused by jet and rocket
engines (random noise) in acustics , or representative samples of load to which
airplanes taxing on rough runways are subjected (random motion) as data ensem­
bles in structure design basing on fatigue limit analysis or fracture mechanics
analysis (cumulative damage) .

A collection of signals picked up just as recorded is classed with a random or
stochastic process if the set (ensemble) of time functions can be characterized
through statistical properties, such as the probability distribution function of speci­
fied vibration magnitudes, the mean-square value, or the frequency-averaged
value of vibration magnitudes .

Random Process Classification
A set of time functions is ordinarily termed a process rather than an ensemble
when it should be emphasized that the informations (properties) represented by
signals are associated with a group.

Stationary Process. A process characterized by an ensemble of time histories such
that their statistical properties are invariant with respect to translations to time is
defined as stationary.

One may regard a stationary random process as somewhat analogous to the
steady-state vibration in the case of deterministic functions.

For a stationary random vibration, the probability that the magnitude will be
within a given magnitude range is taken to be equal to the ratio of the time that the
vibration is within that range to the total time of observation.

A random vibration being not stationary defines a non-stationary process (tran­
sient random vibration) .

Ergodic Process. A stationary process containing an ensemble of time histories
where the time averages are the same for every time history is stated ergodic .

It follows that these time averages from any time history then will be equal to
corresponding statistical averages over the ensemble.

Normal or Gaussian Distribution. A random vibration the magnitudes of which
are accumulated by a probability distribution of Gaussian type specifies a normal
distribution (Gaussian random vibration) .
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Random vibration analysis basing on fundamental statistic properties is con­
fined to a random process which is stationary, ergodic and of normal distribution.
Statistical properties of such a kind of random process base on time averages from
time history ranges of interest (representative vibration-time records) . Due to er­
godicity assumption only one sample function can be chosen being a representa­
tive of the corresponding process in calculating averages instead of using the en­
tire ensemble .

Correlation Function (correlation analysis)
Autocorrelation Function. Various averages used in random vibration analysis
and probability distribution s. A random variable x is a real-valued variable being
discrete or continuous which is defined on a sample space (event space). Taking
account of an ergodic process and evaluating time averages over sample functions
of long duration two representative functions Fi (t) and Fz(t) define a joint or
second-order probability distribution function p(Fi ,Fz, tl , tz)

P(Fi ,Fz,tl,tZ) = Prob[FI(t)::;F(tI),Fz(t)::; F(tz) = F(tl +r)] ,

associated with the probability that the magnitude of a quantity F at any particular
time of observation t l will be less than (or equal to) a given value of this function

F(tz) . The statistical properties of a stationary process representing the function

F(t) do not depend on the particular times t],t z but only on the delay t: Thus, a

second-order probability density function p(FI, Fz , r) can be defined

ii
p(FI, Fz , r) = aF.aF p(FJ , Fz , r)

I z
the first moment of which is the autocorrelation fun ction of the excitation F(t)

+T

RFF(r)=F(t)F(t+r)= lim 21T fF(t)F(t+r)dt (3.l08a).
T->oo -T

Physically RFF(r) may be considered as the temporal mean value of the product

of the value of forcing function F(t) at time t with its value at time (t + r) .

An autocorrelation function is independent of the choice of origin and thus an
even function :

RFF(r) = F(t)F(t + r) = F(t - r)F(t) = RFF(-r) (3.l08b).

Assuming zero mean value (average value) the autocorrelation at zero delay
(r = 0) is equal to

the excitation mean-square value

RFF(O)=Fz(t) (3.l09a)

defined by the mean of the squared forcing function values over the time interval
2T approaching infinity . In practice, the averaging time T is finite and Eqs.
(3.l08a), (3.l09a) only give an estimate with a certain statistical uncertainty
which increases as T decreases. Since a quantity cannot be more coherent to an­
other quantity than it is by itself, the maximum value of RFF( r) occurs when
t: = O.
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Cross-correlation Function . A combined second-order probability density functi­
on can be defined between two vibration magnitudes being physically distinct and
specified by the representative functions of excitation F(t) and its caused dis­

placement s (t) . The associated first moment is given by

the cross-correlation function between F(t) and s (t )

+T

RFs(r) = F(t)s(t+ r)= lim 2lT
JF(t)s(t+r)dt (3.1 lOa).

T.....eo -T

Thus , RFs(r) may be interpreted as the temporal mean value of the product of the

value of forcing function F(t) at time t and the value of the displacement s (t) at

time (t + r) .

A cross-correlation function in general is not even as to point out by its reverse
form between s (t) and F(t)

so that

+T

RsF(r)=s(t)F(t+r)= lim Js(t)F(t+r)dt
T..... '" -T

and by use of the substitution t + r = u
+T

I\F( r ) = lim Js(u - r)F(u)d u ,
T.....'" -T

(3.llOb),

I\F(r) = RFs(-r) (3.llOc).

No configuration of symmetry turns up at zero delay (r = 0) and

the mean-product value
---

RFs(O) = F(t)s(t) (3.11la)

docs not necessarily coincide with the maximum value of RFs(r) when t: = 0 .

Contrary to autocorrelation function the cross-correlation function includes certain
phase informations being of use in correlation analysis.

Power Spectral Density (spectral density analysis)

Definition of the Fourier Transform. Correlation analysis of vibration data has
many uses. The autocorrelation function permits to determine both the real-time
nature of a quantity F(t) and its frequency or spectral properties. This is per­

formed by integral transformation defining the autocorrelation function RFF( r ) as

the inverse Fourier transform of the power spectral density (auto-spectral density

or auto-spectrum) of the excitation SFF(m) (or GFF(m»). Thus, both statistical

functions being in correspondence constitute
the Fourier transform pair (Wiener-Khinchin equations)

+'"
SFF(m)= JRFF(r)e- jwTdr

-'"

RFF(r ) = 2
1
n TsFF (m )e

jTw
d m

-'"

(3.112a)

(3.1l2b).
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Physically SFF (OJ) may be considered as the mean-square value of that part of the

forcing function passed by a narrow-band filter of centre frequency OJ devided by
the bandwidth !:J.OJ of the filter, as the bandwidth approaches zero.

In case of zero delay t: = 0 it follows
the excitation mean-square value

-2- 2 I + 00 I 00

F (t)=O"F =RFF(O)=-2 fSFF(OJ)dOJ=-fSFF(OJ)dOJ (3.109b).
1C -00 1C 0

This points out a way of data processing for obtaining the mean-square value
by the excitation auto-spectrum. This spectral representation of a random forcing
function either will be known or may be determined by the corresponding corre­
lation function RFF(r) performing its Four ier transform. Hereat the existence of

SFF (OJ) must be noticed in view of the absolute convergence criterion

(3.112c) .
- 00

Under that condition SFF(OJ) is bounded similar to the spectral density of Fou­

rier-transformable deterministic functions, Eq. (3.70). SFF(OJ) being an even , real

function of OJ the inverse Fourier cosine transformation, Eq. (3.8Ic),
I + 00

RFF(r) = - f SFF(OJ)coSiOJdOJ (3.112d)
1C 0

may be applied with integration reduced to one-sided infinity. With regard to the
resulting term of Eq. (3.109b), the calculation of the mean-square value thus will
be facilitated by data reduction.

Response to Random Excitation
Correlation analysis of vibration data can be extended to two different points of a
mechanic al structure for studying the transmission of vibration through structures.
Taking pattern from the frequency concept used for response calculations in de­
termin istic vibration, 3.2.3, the Fourier transform method also proves its useful­
ness in random vibration . Contrary to periodic or non-periodic vibrations it is im­
possible to determine the time history of the pertinent motion response (actual
displacement response) . Nevertheless, random vibration analysis takes advantage
of the transform method in predicting the probability of response events or in es­
timating mean responses (response time averages). The determination of analytic
solutions of the equation of motion thus is confined to statistical properties from
which significant parameters can be gathered (statistical response specifications).

Response Calculation with the Fourier Transform. Applying the convolution
integral, Eq. (3.92b), to time-varying functions of an ergodic process the autocor­
relation function of the excitation and the caused effect upon a structure are re­
lated by convolution with the time-response characteristic. The given effect in a
subsidiary time domain (time-delay- or r-dornain) is a correlation function be­
tween the applied force and the displacement response, known as
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the cross-correlation function at F(t) and s (t) by g(t)
00 00

RFs(r)=F(t)s(t+r)= Jg(t)RFF(r-t)dt=g( r) * RFF(r) (3.113a)
0- 0-

or in its reverse form between the displacement response and the applied force as
the cross-correlation function at s(t) and F(t) by g(t)

00 00

RsF(r)=s(t)F(t+r)= Jg(t)RFF(Ht)dt=g( - r ) * RFF(r)
0- 0-

so that with respect to Eq. (3.llOc) ~F(r) = RFs(-r) .

(3.113b) ,

(3.l14a)

(3.114b)

Corresponding with Eq. (3.113a) the correlation-function transforms of the ex­
citation and the caused effect are related by multiplying the excitation auto­
spectrum with the frequency-response characteristic. The given effect in the fre­
quency domain (w-domain) is represented by the frequency or spectral compo­
nents of the correlation between applied force and the displacement response

SFs(m) (or GFs(m») , respectively by its reverse SsF(m) (or GsF(m»), known as

the cross-spectral density (cross-spectrum)
SFs(m)= G(m)· SFF(m)

SsF(m) = G* (m) · SFF(m)

where the companion form is the complex conjugate of the original one

Ssdm) = S;s(m) (3.114c).

The response characteristic defined in 3.2.3 with respect to deterministic vibra­
tion, Eq. (3.79) , is equal to the quotient of two Fourier transforms representing the
actual response and the excitation function . Being a property of linear dynamic
systems that is independent of the type of excitation by definition the signification
of this frequency-dependent property may be extended to random data processing.
In the actual case of a random vibration the ratio of the cross-correlation funct ion
to the autocorrelation function of the excitation, both represented by their power
spectral densities SFs(m) (or GFs(m») , respectively SFF(m) (or GFF(m»), is

identified with
the displacement frequency-response function G( m)

G(m)=IG(m)!ejarcG(CJl) = F[RFS(r)~ = SFs(m) (3.115).
F[RFF(r) SFF(m)

The caused effect is described by the cross-spectral density SsF(m) (or GsF(m») , a

complex -valued function of frequency in which the phase information is retained .
In spectral analysis the argument of the frequency -response function G( m) re­

sults from relating both of the cross-spectral densities to be determined by data
processing:

SFs(m) = G.c m) = !G(m)lej2arcG(CJl) = A(m)e-j2IV(CJl) (3.116a) ,
SsF(m) G (r»)
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and its real part

Re [SFS(CV)/SsF (cv)] = cos [2\V(cv)]

where the phase (frequency- )response is given by

arcG(cv) = \V(cv) = (1/2) arccos {Re [SFS(CV)/SsF (cv)]} (3.ll6b),

usually represented in the logarithmic form

\V(cv) = (I/2} [lgSFs(cv) -lgSsF(cv)] (3. l l 6c).

The inverse Fourier transformation will be performed by the two approaches
introduced for the class of determ inistic vibrations, the inversion formula and the
convolution integral. In any case the calculation of the unknown respo nse in the
subsidiary time domain (z-domain) will be carried out by virtue of the known re­
sponse characteris tics, the frequency-response function G( cv)and the unit pulse

response g( r), Eqs. (3.78a) , (3.83a), (3.84a) .

Convolution Approach. Basing on the already determ ined corre lation function
RFs(r) and its reverse RsF(r) , Eqs. (3.113a,b), the convolution integral, Eq .

(3.92a), or its commutative form, Eq. (3.92b) may be applied again. Chang ing the
time of observation t in the time response characteri stic g(t ) by the particular

delay parameters r l or r z and considering the tempora l mean values at time

t: - I respectively t: + I :

RsF(r-t ) = f g( rJ )RFd (r- t ) + r d d r t
0-

(3.l 17a)

RFs( r + / ) = f g( rz) RFd ( r+ t) - rz ]d r z (3.l l7 b)
0-

the cause d effect can be derived from the above cross-correlation functions by
convoluting them with the unit pulse response g(r) or its reverse g( -r) giving

the autocorrelation function at the displacement response S( / )

~ ~

Rss(r) = f g(t)RsF(r - t) dl = g(r) * RsF(r )
0- 0-

(3.ll8a).

~ ~

Rss(r) = f g (t) RFs(r+ t) d/=g(-r) * RFs(r ) (3.118b)
0- 0-

By substitution of Eq. (3.l1 7a) in Eq. (3.l 18a) respectively of Eq. (3.l l 7b) in
(3.118b) a repeated convolution of the exci tation autocorre lation function with the
unit pulse response yields the response autocorrelation fu nction at s(t)

+~ ~

Rss(r ) = s (t ) s (/+ r ) = f g( rl ) f g( r2 )RFF ( r+ r l - rz )d r ldr 2
-~ 0- (3.119a).

= g( r )> RFF( r)* g(-r)

Corresponding to zero mean value of the forcing function the response mean
value is also assumed to be zero, then Eq. (3.ll9a) yields at zero delay (r= O)
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the response mean-square value

Rss(O) = S2(t ) (3.120a)

defined by the mean of the squared displacement response values over a suffi­
ciently large averaging time T.

The response autocorrelation function , Eq . (3.119a), can be converted to
+'" '"

Rss( ' ) = f RFF(,-t)dt f g('I)g(t+,\)d,\ (3.121a)
- '" 0-

wherein the second term represents an autocorrelation function at the determinis­
tic, aperiodic time characteristic (weighting function ) g(t). This property used in

communication and control sciences is termed
the filter correlation fun ction

'" '"
Rgg(t) = f g('J)g(t + 'I)d'i =g(-t) * get) (3.122),

0- 0-

and corresponds in the w-domain with the square of the frequency-response func­
tion. In spectral density analysis that property is called
the square of transmission characteristic or of frequency-response characteristic

+'"
G(ill)d (ill) = IG(ill)1

2 = f e- jOll Rgg(t)dt

-'"
(3.123a)

to turn out the filtering property of a system.
Being a real system parameter and an even function of ill the Fouri er cosine trans­
formation is valid

'"IG(ill)12
= 2f[cosillt]Rgg(/)dt (3.123b).

o
Writing the response autocorrelation function as a convolution of the filter corre­
lation function with the excitation autocorrelation funct ion

(3.121b)

a form of solution in the r-dornain can be found that is equivalent to Eq. (3.119a).
The repeated convolution product of excitation autocorrelation function

RFF(T) and time-response characteristic geT) as of its reverse g(-,) corre-

sponds with the multiple algebraic product of excitation auto-spectrum SFF (,)

and frequency-response characteristic G( ill) as of its complex conjugate G' (ill) .

This transformed solution represented by
the response power spectral density

Sss(ill) =G(ill)SFdill)Go (ill) = IG( ill )1
2

SFdill) (3.119b)

constitutes together with Eq. (3. 119a) a transform pair .
In spectral analysis the modulus of the frequency-response function G(ill) re­

sults from relating both of the auto-spectral densities to be determined by data
processing:



www.manaraa.com

3.2 Representation of Mechanical Systems by Integral-transformed Models 133

Sss(w) = IG(w)1 2 = A2(w) (3.116d)
SFF(W)

where the amplitude (frequency-tresponse (gain response) is given by

IG(w)1 = A(w) =I :;:~:~ I (3.116e),

usually represented in the logarithmic form

IgA(w) = (I/2)[lgSss(w) -lgSFF(w)] (3.116f) .

Applying the inverse Fourier transform, Eq . (3.69a), to Eq. (3.119b), alterna­
tively can be found the response autocorrelation function by evaluating the Fou­
rier integral

+00 +00

Rss(r) = 2~ f e
j teJl

SFF(w)dw = 2
1
1t f e-

j teJlIG(w)1 2
SFdw)dw (3.124a),

-0') - 00

or due to the Fourier transform SFF (w) being a real and even function of w by use

of the inverse Fourier cosine transformation

Rss(r) =11[cos rto l SFF (w )dw =11 [COSTW llG(w )1 2
SFF (w) dw (3.124b).

1t o 1t o
In case of zero delay t = 0 it follows

the response mean-square value

s2(t) =a~ =~s (0) =-21 +nG(w )1 2
SFF(to )dw =I1IG(wt SFF (w )dw (3.120b) .

1t - 00 1t 0

This points out a way of data processing for obtaining the response mean­
square value by the known frequency or spectral properties of the excitation proc­
ess.. If the excitation random process is ergodic, it follows that the response ran­
dom process is also ergodic . The appertaining statistical average equal to the time

average S2(t) is associated with the time history of the random function s(t)

(actual displacement response) .
For a normal or Gaussian process it is sufficient to know the statistical average

/ (t), to determine the response probability density function associated with the

distribution of expected displacement values .

3.2.6
System Response to Random Excitation. White Noise

Broad-band, stationary random variables with Gaussian distribution are commonly
termed white noise. Ideally, white noise has equal energy for any frequency band of
constant width (or per unit bandwidth) over the spectrum to infinity. Though being
used as nominal random excitation, in data processing white noise is band-limited to
the frequency range of interest. To evaluate the statistical response properties of
white random vibration an "idealized random excitation" may be applied as refer­
ence input to the forced mass-damper spring system introduced in 3.1.
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The frequency-response characteristic G( w) generally defined in random vi­

bration by the ratio of power spectral densities , Eq. (3.115), gets a distinct signifi­
cation in the particular case of white random vibration.
The frequen cy-response fun ction is identified with

IG(w) = So SFs(w) (3.125a)

being in correspondence with the unit pulse response (weighting function)
I

g( r) = So RFs(r ) (3.125b).

Both response characteristics constitute a transform pair being of practical use
in vibration data analysis. As an alternative to the ideali zed pulse-type excitation
(unit pulse) a random excitation with flat spectrum serves as reference input (ideal
white noise) to check the response of mechanical structures.

Inversion Formula Approach
By use of the known auto-spectrum of excitation specified by white noise and
being independent of frequen cy

SFF(W) = SFF.w(W) = So (3. 126)

the transformed solution in the ardomain is given by Eq. (3. 119b) as
the response auto-spectrum to white noise excitation

Sss(w) = S ss.w(w) = IG(W)2!So (3. 127a),

in normalized form

Sss(w) IG(W)1
2

2 / 2
So/k 2 = a SS•W ('1)= G(O) =A ('1) A (0)

by relating Sss to (SFF.W ·IG(0)n=[SoA
2(0)]=(S

o/k
2)

.

The square of transmission characteristic can be written in an explicit form by
gett ing the square of the known compl ex system parameter , Eq. (3.77a) :

IG(wt= I _I I -.L I
(k - m(

2)2+(CW)2 m2 (w~ - ( 2)2+(20W )2 e (1- '12i +(2''1)2

(3.126).
Applying the inverse Fourier transform , Eq. (3.69a), to the respon se transform

Sss(w) (or Gss(w)) by substituting Eqs. (3.125a), (3.127a) the inversion formula

of the compl ex Fourier transform, Eq. (3.124a), assum es the explicit form
S +00

R () - R ()---.J!..._I f I jtWdss t: - ss.w r - 2 27t 2 2e w
k -00 (w~ _(2

) +(2ow)

To evaluate the Fouri er integral the previously mentioned integral theorems of
the theory of analytic funct ions will be utilized . By use of
Cauchy's residue theorem

+ 00 0=2

27tR.s(r)=So f IG(w)\ 2ej twdw=27tSon::Res[IG(zfe jtz]
- 00 k=1 zk
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the corresponding contour integral enclosing two singularities (system-poles) in
the upper half-plane will be evaluated as shown in 3.2.4, [37], [40].

Convolution Approach
Applying the double convolution integral, Eq. (3.119a), to a white noise excitation
the autocorrelation of which is So times the unit pulse (Dirac or delta "function")

the convolution theorem must be extended to generalized functions (distributions)
[38], [39].

Due to the fact that the convolution of a generalized function f with a delta
functional t5yields f

t-s =! (3.l29a)

the generalized convolution product thus results in
+00 00

s;Cr)=Rss,w('r)= So fg( t:\) fg( t 2 )t5(1'+1'\ - T2)d t:(d1'2
-00 0-

00 00

=So fg(t)g(T+t)dt=Sog(-T) * geT)
0- 0-

The same result may be obtained by use ofEq. (3.l2Ib)
+00

Rss(1') = Rss.w(1') = So fRgg (t}5( t: - t)dt
- 00

by the substitution: t: - t = u , and Eq. (3.129a) , it follows
+ 00

f t5(U)Rgg(T - u)du = Rgg(T) .
- 00

(3.129b) .

(3.129c),

(3.l30b)

According to Eq. (3.122) the effect to white noise excitation in the r-domain is
given by So times the filter correlation function

RsS,w(T) = SORgg(T) = Sog(-T) * geT) (3.129d).
0-

Hence, both of the outlined approaches reduce to evaluate either the inverse
transform of the square of transmission characteristic by following the residue
theorem, Eq. (3.98) , or to evaluate the filter correlation function by applying the
integration by parts comparatively with Eq. (3.107), though to be done twice, so
that finally results :
the response autocorrelation function at s(t) of the underdamped system

RSS(T) = ;k :~e-*I[:d sin(mdITI)+co~mdITI)] C3 .BOa),

in normalized form

Rss(T) _ (I I) - I -C;W()lt'[ S . (I 1'2) I 1
/ (

,..---,)-([Jss,w moT -;;e ~sm -., moT
So 4k" mk ""1- S

- co~~I- S2 molTI) ]
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by relating R, to [sRss(O)]=(so})=[So/(4kv'mk)] .
In case of zero delay t: = 0 it follows
the response mean-square value to white noise excitation

2 ( ) 2 I SoRss(O)=s t =0'5= mk 48 (3.131a).

Statistical System Parameters. The response calcul ation with the Fourier trans­
form allow s to describe the process of white random vibration by its statistical
parameters which are associated with the probability distribution of random vi­
bration magnitudes, s =Sw ' of the displacement response s(t ) . The respon se pro-

cess being ergodic, the ensemble averages equal the corresponding time aver­
ages .Taking in random vibration zero-mean value (of excitation accordingly of
response) for granted, the response mean-square value, Eq. (3. 129), is thus inter­
changeable with
the response variance

2 -2- I So So Ias= s (t) = mk 48 = 4kv'mk -;; (3.131b).

The square root of the respon se varianc e is
the response standard deviation

as= l ~s2 (t) 1 = seff =~ I~ n~;8 1 =~ I~k~ I,l:l (3. 132)

being identical with the square root of the time average of squared vibration mag­
nitudes (displacements) s, that is termed the root-mean-square value (r.m.s. value).

The response process being normal , or Gaussian, the response variance , Eq.
(3.130), equals the second moment of the probab ility distribut ion. The respon se
variance thus comes up to determine
the response probability density fun ction

_ _ I s2 Iffl 2
mko

2p(S) = I e 2 C1 ~ = 1. mk8 e- 50S

J2TI as 1r So

in normalized form
__I _ p2 C 2

I 'J" 2 I I [-;1 - - pp(p) = e - P = --vs e 2

J2TIA p J2TI
The normalization is carried out by introducing
the non-dim ensional (displa cement) vibration magnitude p = p ;

(3.133a),

(3.133b).

(3.134a)
e; = Irs;-I

~V~
where s = Sw is the response random variable related to a constant parameter ratio,

and by determining the following statistical system parameters (statistical response
specifications):
the non-dimensional response standard deviation A. p = A. pw



www.manaraa.com

(3.134b)

3.2 Representation of Mechanical Systems by Integral-transformed Models 137

-',w =1~p~(t)I= P w,err =l l~ =Igl=~I,m
2 k.Jmk

interchangeable with the non-dimensional response Lm.S. value I~P~ (t)I,also

called effec tive value Pw,eff ' furthermore

the non -dim ensional response median mp = mpw

(3.134c).

Response Data Plotting. The statistical response curves and specifications, Eqs. (3.J30b) to
(3.133b) , as the result of respon se calculation for an applied random process of white noise ex ­
citation - approximately of an equivalent broad-band random excitat ion - are shown in Fig. A.22
to A.24 of the Appendix A.

The influence of the system parame ter dampi ng ratio I; on the response autocorrela tion func­
tion is represented for a mechanica l system being subjec ted to a white noise exci tation, and is
portrayed for selected fractio ns of critical dampi ng. The statistical parame ters of random vibra ­
tion are given for the underdamped system by the set of decaying sinusoidal autocorrelation

curves, Eq. (3.130b), plotted in Fig. A.22 versus the non-dimensional time-de lay OJ0 ITIover the

positive half plane . This type of correlation curve points at a narrow-band random vibration . For
a system lightly damped less than' « I the autocorrelation curve decreases rapidly as , in­
creases, because there is little correlation between the instantan eous values of s (t ) at different

times.

The re5ponse mean-square values S2 (t) being associated with representative function of the

actual disp laceme nt responses s(t) for different dam ping ratios' are given by [s Rss (0)] times

the maxi mum-values (l/S)at zero delay r =O. From that distinct value of the response auto­

correlation function ({J ss,w (OJOT) , Eq. (3.J30b), results that the level of the responding time

average 52 (t) , Eq. (3.13 1b), is a reciprocal of the damping ratio , .

The frequency or spectral paramete rs of representa tive random vibration funct ions s(t) are

given by the set of power spectral density curves, Eq. (3.J2 7b), plotted in Fig. A.23 versus the
non-dim ensional angular frequen cy wlwo (frequency ratio 1]) , which are directly proportional to

the square of the transmi ssion charac teristics Ie(OJ)1 2
= A 2 (OJ) for different damping ratios 1;.

For a system lightly damped less than ' « I this charac teristic is sharply peaked by resona nce at
1] = I , so that a selective frequency band at resonance will be amplified and thus provide filter
action . Evidently the oscillator acts as a narrow-band filter. Nevertheless, the transmission char­
acteris tic of mechanical filters employing resonances depends upon the magnitude of dampi ng. If
in contrast the actual damp ing amounts to larger magnitudes, by exam ple to the particular frac-

tion of critical damping s = (l/2).J2 , the oscillator approaches an ideal bandpass filter the

response of which is a constant auto-spectrum within an effecti ve bandwidth and zero elsewhe re.
Thi s effect of damping on transmission characteristic is used in measurements to reduce distor­
tion of transducers .

The response mean-square values S 2 (t ) are given by (SFF,WIF(O)1
2 In) times the area

under the A2 (1]) -curves over the posi tive half plane, Eqs. (3.120b) , (3.127b) .
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The statistical parameters of random vibration determine a set of probability density distribu­
tion curves of Gaussian type, also called bell-shaped curves , Eq. (3.133b), plotted in Fig. A.24

versus the continuous random variable p w (non-dimensional vibration magnitude of displace-

ment response s), Eq. (3.134a) , for different damping ratios ( . Concerning a system lightly
damped less than ( « I the intensifying effect on magnitudes at resonance causes a large re­

sponse standard deviation (j s ' so that the displacement responses are spread over a wide magni-

tude range . From the statistical parameter (j s defining the response probability dens ity ptp), Eq.

(3.133b) , results that the level of the response root-mean-square value ~sZ (t) or effective

value seff - associated with the concept of average power in network theory - , Eq. (3.132),

corresponds with the reciprocal root of the damping ratio (.
By use of probability density curves the probability that a given magnitude of random vari­

able will not be exceeded can be predicted.Thus, the probability that the expected instantaneous

vibration magnitude p = p w will be within a certain range of magnitude values is equal to the

integral of the response probability density function p(p) integrated over that range

[Pw\ ,Pwz] :
Pw2

Pr[pW\ ::;p::; PwZ] = Jp(p)dp = P(pwz) - P(pw\) '
Pwl

where P(P) is the cumulative probability distribution function

Pw

pep) = Jp(p)dp.
-00

In random data processing the given magnitude range is commonly specified by the double
Lm.S. value defining the total range of 68-percent defined value to the two- or threefold of that
specified range termed the total range of 95- , or of 99-percent probability, T9" respectively Too
(three -sigma limits) .

Verifying a selected fraction of damping, e.g. SI = (1/2).[2 , a non-dimensional response

Lm.S. value of

Apwl = I~P~I(t)1 =1V21 = 1,1892

results , and the probability that the instantaneous vibration magnitudes fall under the specified
range [- 1,1892, + 1,1892] definitely amounts to

+1,1892

Pr[-1,1892::; p::; +1,1892] = Jp (p)dp = P(+1,1892) - P(-1,1892) = 0,683 .
-1 ,1892

According to the extended total ranges defined by the outlined multiples of the double Lm.S.
value an appropriate probability of 0,954, respectively of 0,997 can be calculated.

In case of a lightly damped system, e.g. for S= 0,05, the recording of displacement magni ­
tudes presupposing the 68-percent probability requires a magnitude range given by the response
Lm.S. value of

Apw2 =I~P~2 (1)1 =10/1v'sI=4,47213

which is the 3,76 fold to Apw 1 for sJ = {1/2).[2 .
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3.2.7
Transient Vibration. The Laplace Integral

Transient vibrations include motions of a system which are neither steady-state
(periodic) nor random vibrations. This category is related to non-periodic vibra­
tions, and the term transient is basically associated with mechanical shock. Shock
motions of finite duration (pulse-type excitations) are presented in 3.2.2. Supple­
mentary to this previously treated type of shock motions non-periodic vibrations
are of interest which are caused by forcing functions suddenly applied (at zero
time) and of unlimited duration (step-type excitations).

The Laplace Integral
The Laplace transformation corresponds with the Fourier transformation, Eqs .
(3.69a, b), operating on the real variable to associated with the angular frequency,
to the effect that a complex variable p comes into operation.

Remark on Symbol p. In particular context of mechanical vibrations the symbol p may be
given for this complex quantity though the symbol s is in use as Laplace variable. The main
symbol s is recommended for displacement as the prime motion variable quantity in mechanics,
therefore it will be justified to give the "reserve symbol" p for the complex frequency or
Laplace domain variable.

The representation of the function F(t) by an integral of the following form de­
fines the
inverse Laplace transform; Laplace integral

0'1 +joo

L- 1 [E(p)] = F(t) =~ fE.(p)etPdp (3.135a)
7tJ O'j-joo

where 0'1 ~ c , the abscissa of convergence of F(P), and the inverse transform is

indicated by the symbol L_ I. The transformation of the function F(t) into a func ­
tion of the complex variable p defines the
Laplace transform

00

L[ F(t)] = E(p) = f F(t)e-Ptdt (3.l35b)
o

being indicated by the symbol L.
The Laplace transform E(p) is a function continuously dependent on the com­

plex angular frequency p . This complex variable, also termed complex pulsatance,
is sometimes denoted the "complex frequency of the drive" with reference to the
corresponding special type of forcing function, 3.2.10. The L-transform can be
interpreted as the generalized spectral density of the function F(t) .

Definition of the Laplace Integral Equation. The integral operator, in this case
the Laplace transform, Eq. (3.l35b), is defined by:
1. The kernel of the transformation, here given by K (t, p) = e" being a function

of the time t as the original variable, and of the "complex (angular) frequency"
p = 0' + jm as the subsidiary variable which in general is a complex quantity . The
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presented kernel signifies an analytic continuation of the kernel of the Fourier
integral K(t, jw) through multiplying it by an exponential function that is defined
by the real part of the complex frequency (growth coefficient) Re p = a:

e-a!e- jro1 = e-(O"+jro)l = e- p1 (3.136)

This exponential term in the Laplace kernel acts as an exponentially decaying (or
"convergence ") factor inducing the convergence of time functions largely of
those types which fail to satisfy the convergence criterion of the Fourier trans­
form, Eq. (3.70). However, this only proves true for positive values of time as to
be gathered from Fig. 3.12;
2. The limits of integration, here (0, (0) ranging from the origin to infinity (one­
sided transformation), which coincide with the definition range of time functions
(original functions) defined only for positive values of time: t ~ 0-, Eq. (3.135c),
(causal functions);
3. The class of time functions, here of forcing functions fit), to which the integral
transformation given by Eqs. (3.135a,b) is true (existence theorem) [37], [44],
[47], [48].

As the integral transformation can be considered as a functional mapping, one
says that the function F(t) is being mapped (imaged) from the original (time or t-)

domain onto the corresponding subsidiary (complex frequency or p-, elsewhere
preferably s-)domain.

The transform E(P) (or E(s» and its inverse F(t) constitute a Laplace transform
pair . The corresponding functional relation is called a correspondence

L
F(t)~ f(p) (3.135c)

being indicated by the correspondence sign and the operator symbol L above it if
need be, see 3.2.2, Eq. (3.69c) .

Restriction of convergence (existence theorem) . The Laplace transform exists
for time functions being cut off for times prior to t = 0-

F(t)=O for t <O- (3.135d),

but then under the more temperate restrictions as follows. Assuming the function
F(t) to be piecewise continuous the Laplace transform exists if

K(t,a)
\
\
\
\
\

1\

o

-ate

Fig.3.12. Decaying exponential (convergence factor) in the kernel of the Laplace integral.
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the absolute convergence criterion is satisfied
en en

f1e-p olF(t)ldt = f e -RePOl IF(t)ldt < 00 (3. 136a),
o 0

i.e., whenever the Laplace integral, Eq . (3. 135b), exists for so me number p = Po'
then there exists a closed right-half plane of absolute convergence

Rep = o~Repo = 0 0 = c (3. 136b)

wherein F(p) is analytic (or regular), Fig. 3. 13.

j lmp=:jw
abscissa ofconvergence Repo=oo=c

.......---+ region Rep>c of convergence of F(p)

Rep=o
+a

+00o

p=:o+jw
+jw --I----~--..(l

value of the complex variable p

Fig. 3.13. Complex p-p lane with region and abscissa of convergence

Condition (3.136a) implies that F(t) thoug h becoming infinitely large as

t ---+ 00, IF {t )1 does not "grow" more rapidly than a mult iple M of some exponen-

tial funct ion of t (or the product ePOlIF(t )1is bounded for large values of t):

e- POl!F(t)1 < M or IF(t )1 < M e Pol (3. 136c) .

Such a function F(t) is said to be of exponential order and is denoted

F(t ) = O(ePOl) . Compared to the Fourier transform ation these restrictions are

weak. Thu s, the class of Laplace-transformable fun ctions includ es most of the
time-varying function s occ uring in practice, e.g., the steady sinusoidal excitation,
as far as the varyi ng values of time are only positive (causal functions). Subse ­
quently for analysing vibrations caused by non-p eriodic, or rather transient exc i­
tations it becomes almos t unnecessary to extend theorems on the Laplace trans­
formation to the theory of generalized funct ions (distributions).

(3.138a)

Transient Harmonic Excitation (sinusoidal step excitation). The forcing func­
tion of a harmonic excitation suddenly applied at t = 0, thus being a non-period ic
sinuso id section abbre viately termed a transient harmonic excitation, Fig. 3.14, is
defined as

1
0 for t < 0

F (t) = A

W F COS(Wft-qJ OF) fort >O
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Fro (t)
A

+F
A

+FcoslfJo

o

A-F -t-+---'....

Fig. 3.14. Transient harmonic excitation (sinusoidal step)

with the parameters characterizing a sinusoidal step :

force-excitation amplitude F, forcing (angular) frequency Wf and force-excitation

initial phase qJOFnot being omitted.

Evaluation of the Laplace transform applying Eq. (3.135b) to the transient har­
monic excitation defined by Eq. (3.138a) is facilitated by use of Euler's formula,
Eq . (3.49), thus substituting one-half the sum of the complex constituents

Fe - jq>OF e jOl fl and Fejq>OF e- jOlfl for the simple harmonic excitation:

et:J

Fffi (p) = L[ Fro (0] = ~F J[e-jq>OF e-(p-jffirl t +e+jq>OF e-(p+jrorll ]dt
o

= I F {e- j<P OF I . le-(P-jffir)tlet:J +e jq>OF I. !e-(p+jOl rlll et:J }
2 -(P-JWf) a -(P+Jwf) 0

'-.,-----' '-.,-----'

=-1 =-1

= 1 F[ (p+ jWf )e - jq> OF + (p - jWf )e jq>OF ] = FPCOSqJOF + Wf sinqJoF
2 2 2 2 2

P + Wf P + Wf

(3.138b).
The direct calculation of Laplace transforms bases on the evaluation of the defini­
tion integral, Eq . (3 .135b), which is an improper definite, and in particular a real
integral. Definitively the variable of integration is the time t being a real variable,
since the subsidiary variable p ind icates only a constant being connected with the
kernel of the definition integral.

In addition to evaluating procedure certain prop erties of the L-transformation
are used , in consequence of which transforms of many functions can be obtained
in a simple manner. The most important property, already used in above calcula­
tion, implies the combination offunctions by a linear operation (linear property).

Moreover theorems on the transform of functions are associated with the direct
calculation, perhaps that one on the transform of delayed functions (second or
time shifting theorem). In determining the transform of the excitation that theorem
provides for the shifting of functions, e.g., of the forcing function or of their com­
ponent parts, on the t-axis in the positive direction. Using transform pairs of ele-
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mentary function s and their known transforms, being listed in transform tables,
and if so applying delayed-function transforms, the Laplace transformation may
be carried out with moderate effort to definable time-varying functions as to be
gathered from specialized references [37], [42], [44], [45], [III ].

3.2.8
Laplace Transform Method. Transfer-function Analysis

The Laplace integral introduced to gain integr al transforms of time-unl imited
forcing functions (step-type exci tations) pro ves its usefuln ess first of all for solv­
ing linear differenti al equations arising in engineering mathematics. Vibration
analysis likewise takes advantage of this operational method to determine analytic
solutions of equations of motion . The Laplace transform method appears well
suited to transient excitations. The response calculating for this spec ial type of
excitation usually performed in the time (or t-domain), will be carried out in a
generalized frequency domain , known as the Laplac e (or p-) domain . Neverthe­
less, the corresponding operat ional method perform ing a response calculation
continuously in the time (or t-dom ain) will be dem onstrat ed by which a compari­
son with the classical method, exemplified in 3.1, becomes possible.

Starting algebraic equation ca lculus from time-doma in representation by the
gove rning differential equation of motion one must be able to express the trans­
form of the der ivat ives in terms of the transform of the sys tem variable, e.g., of
the displacement s(t) as the pertinent motion variable quantity.

Laplace transform of derivatives (differentiation theorem ). Let the Laplac e
transform of a function s(t) exist and let s{t) be cont inuous for all t ~ 0 , then if

(d/dt )s(t ) exis ts

L[:1S(t) ]= pL[ s( t) ]

denoted as a transform pair 05 ( t ); p~ (p), s(O) symbolically by the correspondence

set) 0 L • p~ (p)- s (O)

This theorem is proved through an integration by parts
00 00

L[ s(t) ]=fe- PIs( t) dt =e- pts{t)I: + p f e- pts(t )dt
o 0

=- s(O+)+ p~(p) ,

wherein the initial value s(O+) is to be interpreted as a right-hand limit. This cor­

responds to the definition integral taking the lower limit as 0+:
00

L[S(1)]= limf s (1)e-Ptdt ,&> 0.
&.....0

&

To exclude a discont inuity at t = 0, the origin will be approac hed on principle
from the right , thus defining in the followi ng

s(O) = s(O+) .
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Repeating the procedure ntim es the transform of the nth derivative will be ob­
tained by induction

s(n)(t) 0 L • pn ~ (p) _ s(O)pn- 1 _ s(0 )pn-2 _ oo ' _s(n -I)(O) (3. 139b)

with the initial values:

s(II- I) (0) " " ,s(O),s(O)

(as long as s(n) (t) exists, in addition set) and all its derivatives through the

(n - l )st derivative are continuous).

Laplace Transform Method
The solution of a differential equation by integral transfo rmation, here by the
Laplace transformation , will be obtained by genera l steps already pointed out in
3.2.3, just so visualized as the scheme of Fig. 3.9.

The Laplace transform method provides a most convenient means of solving
linear different ial equations of motion for lump ed parameter syste ms. It can be
used successfully also in the case of linear partial different ial equations gove rning
continuous sys tems as well as for equiva len t syste ms in the state variable form
(state space method) . Both of the advanced methods are treated by more specia l­
ized refere nces [15], [30], [35] .

Altho ugh being similar to Heaviside' s ope rational calc ulus the Laplace trans­
form method is mathematically rigorous. In contrast to the class ical method that
requires the fitting of the general solutio n to the initial or bound ary conditions,
these conditio ns are automatically incorpor ated in the transformed solution for
any arbitrary exc itation. Eve n contrary to the Fouri er transform method the first
step oh which includ es the implying of initial or boundary conditions, the Lapl ace
transform method yields the total or complete response at the first atte mpt.

In genera l the complete response is a superposi tion of the sys tem response to
both the exci tation and the initial co nditio ns. In electrical circuit theory one solu­
tion part is disti nguished from the other by the term s zero-state response and zero­
input response. A syste m (or a circuit) is said to be in the zero state if all the initial
conditio ns are zero. The response of a system starting from the zero state is due
excl usively to the exci tation (or input) . In the other case, looking at a system
without an applied exci tatio n, the response is a function of the initial state defined
by the non- zero initial values describ ed at t = O. Referred to mechanical applica­
tions the system response to initial conditions may be termed zero-driving re­
sponse replacing the notion zero input.

The last step consists in perform ing the inverse transformatio n of the trans­
formed solution (p-do main solution), here implying an evaluatio n of the Laplace
integral, Eq. (3. 135a), yet for the function s.(P), since an original solution (t­
domain solution) is required. The case may be whenever the time history of the
pertinent motion response , e.g., the actua l disp lacement response set), is of esse n­
tial interes t (real-time or time-response analysis ).

In vibra tion data analysis that applies espec ially to transient vibrations caused
by shoc k loadin gs where a mechani cal source is suddenly turned on and rema ins
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stationary thereafter. It will be exemplified later on by the time-response calcula­
tion referred to a harmonic shock excitation (sinusoidal step excitation) that the
Laplace transform method is based on an integral transformation being well
adapted to that type of a shock motion (step-type excitation).

Nevertheless, for a lot of problems concerning system analysis and design the
system behaviour can be determined merely by examining the transform of the
unknown response , e.g., the displacement-response transform s.(P), without actu­
ally carrying out the inverse transformation (transfer-function analysis).

If still being of essential interest the inverse transformation possibly involves a
rather complicated step of calculation that may be facilitated by the use of tables
of transform pairs. Confining oneself to time-response calculations for idealized
types of transient excitation acting on lumped parameter systems the evaluation of
the inverse transform , here of the Laplace integral , reduces to some approved
rules of mathematics being of use for practical applications, see 3.2.9, [37], [40],
[41], [45], [47], [48].

Response to Harmonic Shock Excitation. The transformation of the differential
equation governing a forced mass-damper-spring system , Eq. (3.1) , under a tran­
sient harmonic excitation (sinusoidal step excitation), Eq. (3.l38a),

ms + cs + ks = F(t) = Fro (t) (3.140)

by applying the Laplace transformation to both sides of the differential equation

mL[s] + cL[s] + kL[s] = L[Fro(t)] (3.l41a)

and using the differentiation theorem, Eq. (3.l39b), successively for the first two
derivatives yields an algebraic equation of the transforms, being called the sub­
sidiary equation of the differential equation

mp2 ~(p) + cp~(p) + k~(p) = Fro (p) + ms(O+)p + cs(O+) + ms(O+) (3.141b) .

Solving the algebraic equation with ease for s.(P) the transformed solution is ob­
tained representing the complete displacement-response transform s.(P)

~(p) = Sro (p) = I 2 Fro (p)+ 1 2 [(mp+c)s(O)+ms(O)]
- k+cp+mp - k+cp+mp , ,

~ =l(p) (3.l42a).

To emphasize its physical meaning the transform of the unknown response set),
called the response transform s.(P), is separated into two terms, one due to the
transform of the known forcing function Fro (t), sometimes called the driving

transform fro (p) , and the other due to the known function of the initial values

l(p) with sand s , i.e ., the initial displacement s(O) and the initial velocity S(O) .

Thus, as one of the fundamental properties of linear time-invariant systems can be
stated, the complete displacement-response transform s.(P) is the sum of
the transform of the zero-state response ~F (p) and the transform of the zero-

driving response ~I (p) , i.e.:

~(p) = S6) (p) = G(p)Fro (p) + G(p)l(p)

= SF (p) + sl (p)
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Also, by the linearity of Laplace transforms the same holds for the corre sponding
actual respon se in the time domain.

For simplicity, all initial values are prescribed to vanish, Eq . (3.43) , and the os­
cillator is assumed to start at t = 0 from rest. From the so defined zero state ensues
ICp) = 0, thus, the second term drops out and the transform of the complete dis­
placement response s..Cp) , Eq. (3.142b), reduces to
the displacement-response transform ofzero-state response ~F (p)

~(p) = slJ) (p) = G(p)FlJ) (p) = sF(P) (3.142c) .

Laplace- (or p-) domain-response Characteristic. The input-output relation of the
compact type of an algebraic product, Eq . (3.142c), is one with considerable sig­
nificance in practical application that relate s transform method and block diagram
representation, see 2.1 . The response transform of zero-state response
~(p) = ~F(P) results from multiplying the excitation transform f lJ) (p) by a com-

plex quantity termed
the displac ement transfer function G(p)

G(p)= 1
mp 2+cp+k

I 1
m p 2 +2Jp+w ~

2
Wo I

k p 2 + U;W oP + W~
(3.143).

Transfer Function. This response characteristic is defined as a property depend­

ing on the complex frequency p (or s), that is equal to the quotient of two Laplace
transforms representing the actual zero-state response and the excitation function
by their generalized spectral densities, Eq. (3.144) . Contrary to the complexor
appropriate to forced sinusoidal responses for steady-state analysis, 3.1.3 , the pre­
sent quotient is a complex system param eter varying in p over the definition range
of the related Laplace transforms. To give a meaning of the complex variable
sometimes the conception of a "complex frequency of the drive" accounts for p
with respect to an exponentially growing sinusoidal excitation.

The transfer function G(p) being a property of linear dynamic systems is:

- a rational function of the complex frequency variable p (or s) with real coeffi­
cients;

- a generalized frequency-response characteristic taking account of the me­
chanical components or elements (element parameter values) and the intercon­
nection of parts or subsystems (topology of the mechanical system);

- suited to more generalized types of transient excitation functions.

Particularly the Laplace transformation is connected with the block diagram rep­
resentation being an effective tool to provide a great deal of insight into the
physical system. By use of algebraic input-output relations between the compo­
nent variables the overall behaviour of interconnected parts (subsystems) can be
determined in the Laplace domain (tran sfer function block diagram), see Sec.
2.1.1.

In the case of motion response by a displacement the ratio of the displacement­
response transform s..Cp) to the transform of the excitation force ECp) is identified
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for the system initially at rest with
the displacement transfer function G(p)

L[s(t)] ~(p)
G(p)= L[F(t)] = f(p) (3.144).

The transfer function G(p) is closely related to the frequency-response function
G(w), Eq. (3.79), being equal for p = jw. However, certain analytic properties
have to be observed concerning the relation of Laplace transforms to the Fourier
integral [36]. The frequency-response function G(w) can be considered as the
boundary function GGw) of the transfer function G(p) on the imaginary axis, in
short the equality

G(w) = G(p)lp=jltl = G(jw) (3.145a)

holds true since

- the region of convergence of G(p) contains the j a-axis in its interior, i.e., if
c < 0 ;

- the jro-axis being the boundary of the region of convergence of G(p) , i.e., if
c = 0, no singular point (system-pole) P, lies on the imaginary axis.

It can be shown that these conditions of the p-domain response characteristic G(p)
validating Eq. (3.145a) correspond with an absolutely integrable time response
characteristic g(t) the L-transform of which is identical with the F-transform of
g(t) for all p = jw . This results in the equality

F[g(t)] = L[g(t),jw] (3.145b) .

Apart from the property of causality that one of asymptotical stabil ity is satisfied.
This proves right in any case of passive vibrating systems with damping. By rea­
son of the corresponding equalities, Eqs . (3.145a,b) the pertinent motion charac ­
teristic is indicated as well by the nature of the eigenvalues (system-poles), Eq.
(3.15), as by the condition of integrability of g(t), Eq. (3.149b) .

Time-response Characteristic. An important concept in linear system analysis is
to apply the unit pulse, Dirac or delta "fu nction ", denoted b\t) and already intro­
duced in 3.2.3.

Unit Pulse Response (weighting function). The response characteristic in the time
domain , in control theory called weighting fun ction and denoted g(t) , is related to
the characteristic in the frequency domain previously dealt with, the transfer
function G(p). Both response characteristics constitute a Laplace transform pair
denoted by the correspondence

L- 1
G(p) • 0 get) (3.l46a).

The evaluation performed by the Laplace integral for G(p)
cr, + jco

g(t)=L-I[G(p)]=~ fG(p)etPdp (3.l46b)
TeJ cr,- jco

yields the unit pulse response being a causal function, Eq. (3.82).
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The unit pulse response, thus defined as the inverse Laplace transform of the
transfer function G(p), and termed in mathematical notation Green's function has
already been interpreted as to different kinds of excitation as to the determination
of system characteristics in the time domain (transient-response specifications) by
the Fourier transform method, 3.2 .3.

A set of time-history curves of the transient vibration "unit pulse response" is
shown in Fig. A.17 of the Appendix A.

Stability of Motion. The transfer function G(p) being an algebraic response char­
acteristic in the subsidiary (or p-) domain permits to make some assessment of the
dynamic system's behaviour by analysing the denominator polynomial H(P). Be­
ing identical with the characteristic equation PCP), Eq. (3.13b),

H(p)=.P(p) (3.147)

the roots of the denominator polynomial represent the characteristic values (or
eigenvalues), so the poles of the transfer function (system-poles) Pk are equal to
the characteristic values.

The motion characteristics depend on the nature of the system-poles determin­
ing properties and system parameters such as system's stability, time constants,
damping ratio and natural frequency . The root criterion (discriminant) already
used by the classical solution method in 3.1.2 for demonstrating periodicity (os­
cillatory behaviour) and stability of the natural (eigen-) motion of the damped
oscillator may be completed by relating the nature of the system-poles P« to the
stability criteria :

I. At least one of the poles is real and positive or they are complex conjugates
with positive real part :

Repk =0\ >0 ; Impk =jWk =0 or jWk *0 (3.148a)

the fundamental (natural) vibration increases exponentially with time, hence,
the motion is unstable .

II. The poles are either real and negative or they are complex conjugates with
negative real part:

Re Pk = 0\ < 0 ; 1mPk = jWk = 0 or jWk * 0 (3.l48b)

the fundamental vibration approaches the equilibrium position as time in­
creases, thus , the motion is asymptotically stable .

iii. The poles are pure imaginary:
Repk =0\ =0; Impk =jwk *0 (3.148c)

then the fundamental vibration is a simple harmonic oscillation about the
equilibrium position. This root location characterizes a limited stability, thus,
the motion is termed neutrally stable . {I

Neutral stability also occurs since one pole is negative and the other one is zero. Excluding two
multiple zero poles (zero double roots) as an actual root location for the considered mass­
damper-spring system (second-order system) neutral stability generally can be stated since at
least one pole has a zero real part and the other one is without a positive real part. Conversely ,
for all characteristic root locations , since at least one pole has a positive real part, the motion is
unstable .
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These observations hold true for systems of higher order. The conditions for stability of
higher-order systems are summarized by the Routh-Hurwit: stability criteria used as a conven­
ient stabi lity test in control system design . Those criteria consist in several rules applied to the
coefficients of the characteristic polynomial without solving for the roots [2], [3].

The response characteristic get) in the original (or t-) domain, defined by Eq. (3.146b) as the
inverse Laplace transform of the transfer function G(p) , has already been interpreted as a spe­
cific transient vibration at natural frequency, 3.2.3. Thus, the relationship existing between the
pole configuration of the transfer function G(p) and the corresponding unit pulse response get)
proves useful for determining properties and system parameters. The preceding relationships
can be represented by plotting the location of the characteristic roots in the complex frequency
plane, called the p- (or s-) plane, and the graphical interpretation is based on the P: (or s-)

plane geometry of the transfer function G(p) .
For a preliminary study only the steady-state value of the time-response characteristic get) is

of interest. The behaviour of get) in the neighbourhood of t~ 00 can be derived from the be­

haviour of pG(p) at the origin for p =0 by use of the equality (final-value theorem)

lim pG(p)= lim g(t)=O (3.149a).
p-+O 1-+ 00

The theorem's conditions are satisfied since G(p) is analytic (or regular) in the right-half plane,
that means , all the system-poles lie in the left-half plane. This restriction on the poles of pG(p)
corresponds to the criterion of asymptotic stability, and the system is thus said to possess sig­

nificant behaviour.
In the case of system-poles lying on the imaginary axis (on the boundary of the left-hal f

plane) get) never dies out but remains bounded within the values +gand - g(peak-to-peak

value or double amplitude of a harmonic vibration) as t ~ 00 , and the system is thus said to

posses s critical behaviour corre sponding with the criterion of neutral stability .
A more rigorous rest riction on the behaviour of get) as t ~ 00 is given by the condition of

absolute integrability equalling the fund amental theorem of Eq. (3.70) that states the existence
of a Fourier transform of the unit pulse response

I 00

lim Jlg(t)ldt = Jlg(t)ldt < 00 (3.149b) .
1-+ 000 0

The absolute convergence criterion is satisfied, thus the frequency function G(m) exists ac­
cording to Eq. (3.145), since the region of convergence of G(p) contains the jze-axis in its inte­
rior , that means, no system-pole lies on the imaginary axis . This restriction on the convergence
of get) contains a strict conformity with the criterion of asymptotic stability .

Algebraic stability criteria, so the Routh-Hurwitz criterion for continuous-time models or
the Jury criterion for discrete-time models, give informations about the ab solute stability of
higher-order systems represented by the transfer function of linear time-invariant models . For
predicting a stable system in reality though the numerical values of the coefficients of the char­
acteristic polynomial are not known exactly the stability test is reduced in practice to state the
proximity of the characteristic roots to the imaginary axis, thus indicating the relative stability

ofa system.

Root Locus Study of Damping. The stability criteria based on the nature of the
characteristic values (or eigenvalues) can be best visualized by the p- (or s-) plane
geometry of the transfer function G(p) . Then, the left half-plane represents the
region of asymptotic stability, the imaginary axis the region of neutral (or critical)
stability , and the right half-plane the region of instability .

System design is not only interested in stability statements but also in response
characteristics, and in particular how a response characteristic in the original (or
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t- ) domain changes as the system parameters change. Therefore, the locations of
the roots (characteristic values) being equal to the system-poles are plotted in
terms of some system parameter varying its value within the range of interest.
This method is termed the root-locus method which turns out that the roots lie on
smooth curves , known as loci, and the plots themselves are called root-locus plots.
This method is widely used in control system design for determining the control
logic elements, likewise for driving the characteristic values into the left half­
plane from the right half-plane the imagina ry axis included.

Generally some degree of damping is usually desired in vibration systems for
safety, while in control systems a considerable margin of stability is essential,
preferably with little or no oscillation. By example of a second-order system as
the damped oscillator the following root-locus plot can be traced by plotting the
imaginary parts versus the real parts of the characteristic values PI.2' Eq. (3.15),
where the system parameter damping coeffic ient (attenuation coefficient) 0, Eq.
(3.3), varies, whilst the (undamped) natural frequency wo' Eq. (3.6a), is fixed, Fig.
3. l5a.

In the case of less-than-critical dampin g 8 < Wo the two loci (comp lex-roots case) move

along a semicircle of radius Wo ce ntered on the origin as 8 increase s, until the roo ts coa lesce on
the real axis as 8 reaches wo'

In the case of greater-than-critical damping 0> Wo the two loci (real-roots case) split once

again, movi ng along the negative real axis in opposite directions.
The distinct values of 8 are appropriate to the two points on the imaginary axis and the

splitting point on the negative real axis both representing limiting conditions, first the case of
absent damping 8 = 0 (pure imaginary -roo ts case ), second the case of critical damping

o= W 0 (repeated-roots case) .

By relati ng the characteri stic values P1.2 to natural frequency (angular) Wo the normalized
form of root -locus plot will be obtained by varying the dampin g ratio t;. Eq. (3.5), as the only
system parameter , Fig. 3.15b.

Roots with the same damping ratiot;=o/Wo lie on the same line through the origin mak­

ing an angle of ewith the imagi nary axis.
Roots on a given line para llel co the imaginary axis have the same damping coeffici ent 8

constituting the distance of the line from the border line of stability. As 8 equals the reciproca l
of the time constant (relaxa tion time) T" Eq. (3.4), the grea ter the distance, the smaller T,. The
relative stability of the system consequently depends on the roo t lying closes t by the imaginary
axis, that means the root with the largest time constant thus termed the dominant root . By use of
the time constants T", T" , Eq. (3.28a), the time-constant representation of non-oscill atory free
vibration (rea l-roots case) demonstrates that in the case of greater-than-critical-damping the
natural motion (transie nt motion) result ing from two decaying exponential components can be
replaced by the approximate one with the largest time cons tant, that is T" assoc iated with the
dominant roo t P,= 8 - A., Eq. (3 .25), see Fig. A.2 of Appendix A.

The focusing on the root that plays the significant role in assessing dynamic system' s beh av­
iour simplifies the analysis of motion charac teristics basing on the p- (or s-) plane geometry of
the transfer function G(p), and the method is called the dominant-root concept [3] .

Time-response Characteristics and Root Location. To illustrate how the transient
motion at natural frequency change as the system parameter (viscous) damping
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Fig. 3.15. Complex p-pl ane with the roots (system-poles) P" in terms of system parameters.
a Root-locus plot; b normalized root-locus plot

ratio S changes the time-response characteristics are classified according to the
locations of the characteri stic roots (system-poles) in the p-plane on the left and
the associate unit pulse response curves .J'iWi .g( r) , Eqs. (3.83b) , (3.84b), just as

the unit step response curves k- h( r) on the right, Fig. 3.16.
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Fig. 3.16. Root locations and time-response characteristics in terms of the damping ratio ~ for
a system being : a Underdamped; b critically damped; C overdamped ; d undamped
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The four cases of damping are related to both , the periodicity of motion (oscillatory behav­
iour) and the stability of motion .

The damped oscillator is an (asymptotically) stable system of significant behaviour por­
trayed by decaying response curves. The margin of stability given by the proximity of the roots
to the imaginary axis differs with the actual damping , respectively with the pertinent time con­
stant. The damping effect on nature of vibrating (periodicity) involves with increasing damping
ratio a change in natural motion from the oscillatory to the non-oscillatory transient state, Fig.
3.16a to c, whereas at critical damping , Fig. 3.16b, the limiting transient state is passed .

The undamped oscillator possesses critical behaviour characterized by an oscillating re­
sponse curve the amplitude of which does not increase nor decrease. Thus, the oscillator is a
neutrally stable system, Fig. 3.16d.

Response Calculation with the Laplace Transform
The remaining problem is to determine the system response in the time domain
(actual displacement response) set) corresponding to the transformed solution
(complete displacement-response transform) s.(P) already being calculated, Eq.
(3.l42a).

There are two approaches to perform the inverse transformation:

- to evaluate the Laplace integral by substituting the response transform s.(P) for
E(P), into the inversion formula of the Laplace transform, Eq. (3.l35a),

crt + j co

L-l[~(p)] = s(t) = 2~ ' f~(p)etPdp
J crt -J'"

(inverse transformation in the p- (or s-) domain by using integral theorems of
the theory of analytic functions);

- to apply the convolution integral (superposition integral) to unit pulse response
get), Eqs . (3.83a), (3 .84a), and to actual excitation F(t), Eq. (3.l38a) (integral
transformation in the t-domain).

Convolution Approach. The latter approach is performed by a time response cal­
culation using a corresponding time-domain relation of equivalent significance to
the general algebraic product G(P)E(P) of Eq. (3.l42c) representing the displace­
ment-response transform of zero-state response ~(p)=~F (p) .

Inversion formula of algebraic product (time convolution theorem). Taking into
account the Laplace transform of derivatives (differentiation theorem) the alge­
braic multiplying of the complex system parameter varying in p, G(p), by the ex­
citation transform E(P) being differentiated w.r.t, complex frequency involves a
transform pair (differentiation theorem of the convolution integral) denoted by
the correspondence

~(P)=p[G~) .f(P)]. L-
1

0 tt[h(t)~F(t)]=S(t) (3.l5Ia).

The derivative of the related time functions in brackets w.r.t. time implies an inte­
gral expression known as Duhamel's integral

s(t)= tt[h(t)~F(t)]=h(t)~F(t)+h(O+)F(t) (3.l5Ib).
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Evaluation by parts results in a sum of two terms the prime of which is defined by

the convolution of the function s Ii (t) and F(t) called

convolution (or Faltung) integral (convolution theorem)
t

s(t) = fIi (r) F(t - r)dr + h(O+)F(t) (3.152a)
T ~O

or, equivalently , due to the given symmetry in Ii (t) and F(t)

(commutativity of convolution)
I

s(t ) = f F( r) h(t - r)dr + h(O+ )F(t)
T ~ O

(3.152b),

(3.153)
L- 1 I

~(p) = G(p) ' fJp) • 0 g(t) * F(t) = s(t)
o

(The limits of integration fitted to boundedness of observation time can be
dropped as the convolution symbol is unique .)

The convolution integral in detail is identical with that of Eq. (3.92b), 3.2.3.

wherein the unit step response h(t) is the pertinent time-response characteristic the

first derivative W.r.t. time, Ii (t), of which is equal to the unit pulse response

(weighting function) get), Eq. (3.89a) .
Contrary to the previously treated transform method basing on Fourier trans­

forms the Laplace transform method satisfies the restraints of causality principle,
Eq. (3.82), and of causal excitation functions, Eq. (3.93), per definit ion (one-sided

transformation). Furthermore, following Eq. (3.89a) Ii (t) may be replaced by get).

Presupposing for mechanical systems predominated by inertia a transfer func­
tion G(p) being a rational algebraic fraction the order of which is indicated by the
proper case m < n, Eq. (3.89b) , the initial value of unit step response vanishes , Eq.
(3.89c). Thus, the convolution theorem, Eq. (3.151a), reduces to the algebraic
product of generalized frequency-response characteristic and excitation transform
corresponding with the convolution product of time-response characteristic and
actual excitation . This relation constitutes the standard transform pair, being as­
sociated with that of the Fourier transform method, Eq. (3.92a), and denotes
the correspondence

3.2.9
System Response to Transient Excitation. Step-type Functions

The Laplace transform method will be utilized for determining the system re­
sponse in the time domain as follows. Taking up the non-periodic forcing function
of step-type as a transient excitation applied to the mass-damper-spring system the
inverse Laplace transformation will be performed by 6~th of the approaches
pointed out before, that is the inversion formula and the convolution integral. In
any case the calculation of the unknown time response will be carried out by vir­
tue of the generalized f requency-, or else the time-response characteristic, both
being known with reference to the already calculated transfer function G(p), and
the unit pulse response g(t), Eqs. (3.172), (3.38a), (3.84a).
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Inversion Formula Approach
Writing the displ acement-response tran sform of zero- state response
~(p) = ~ F (p) in 3.2 .8, Eqs. (3 .142a,c) , in an explicit form by use of the known

Laplace transform of the transient harmonic excitation, Eq . (3.138b), the trans­
formed solution of the differential equation, Eq . (3 .140), with special reference to
the oscillator initially at rest results in

~(p)=sro(p)= OJ
k
6 1 ipcosqJoF+OJfsinqJ oF =_I_D(p)

p2+28p+OJ6" /+OJ~ H(p)N(p)

= G(p) = F ro (p)
A 2

= FOJo COSqJ OF p+ OJf tanqJOF = K _1_ d(p)
k (p2 +28p+ OJ6)(p2 +OJi) S h(p) n(p) '

(3 .142d).
Th e response transform ~(p) is a rational function of the variable p represented by

the ratio of two polynomials

blP + bo _ pep)

a4l + a3i + a2/ + alP + ao - Q(p)

r =1

Ibipi
() ....!.i~-O~_

Sro P = n=4

- Iakpk
k=O

or in form of two reduced polynom ials

(3 .142e),

r =l

I/3ip i

() .2.i==O__ = K /3IP + /30 = K P.(P) (3 42f)
Sro P = n=4 S 4 3 2 S q(p) .1 ,
- " k a4P +a3P +a2P +alP+aOL.,akP

k=O

where Ks is the (real) response factor

A 2
K - b I - FOJo COSqJOF

S - I a4 - k '

and the (real) coefficients hi' a. are reduced to the response coeffi cients A, ~
/31 = I ; /30 = bol b, = OJ f tan qJ OF

a4 = I ; a 3 = a31a4 = 28 ; a 2 = a21a4 = OJ6 + OJ ~

al = al/a4 =28OJ~ ;ao =ao/a4 =OJfOJ6 '

Since the degree of the denominator polynomial Q(P) or q(P) is greater than that
of the numerator polynomial pcp) or P. (p), e.g. , n = 4 and r =I , the transformed

solution ~ (P) is a proper fraction , thus it vanishes as p~ 00

lim ~(p) =0 for n > r
p-HO

(3.154).

Applying the inverse Laplace tran sform, Eq . (3.135a), to the response trans ­
form s (P) by substituting Eq . (3.142f) for E (P) the inversion formula of the
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Laplace transform, Eq . (3.l50a), yields the explicit form

F
~ 2 O"I+joo
Wo COSlpOF 1 I P+Wf tanlpOF tpd

s(t)= sw(t) k 21tJ' 4 1: 3 (2 2) 2 2 2 e ifJ
O"dooP +2u P + WO+Wf P +2owfP+wfwO

for t::::O

(3 .150b).

To evaluate the Laplace integral being a complex integral the theory of analytic
functions (complex variable functions) will be utilized by means of theorems for
complex integration from the first. That means, there's no need for an analytic
continuation as carried out in 3.2.4 in order to evaluate the real Fourier integral.
The inversion formula, Eq. (3 .l35a), is defined in 3.2.7 as a complex integral with
infinite limits of integration (improper integral) ranging from C71 - joo to

C71 + joo . The constant (7) is retained to indicate a straight line integration path

paralleling the imaginary axis apart the positive real value +C7 1 ' thus lying within

the region of convergence, Eq . (3.136b), here of s.(P) : C71 > c . The evaluation of

the line integral along this vertical line, called the Bromwich path and sometimes
being abbreviated by the letters Br, is in general complicated. However, by a suit­
able modification of the path to a simple closed curve C (contour) the difficulty
can be overcome and results may be obtained with ease on account of Cauchy 's
integral theorem . The path of integration thus will be closed around a contour by
tracing a line segment C) parallel with the imaginary axis and an arc of circle C2 of
radius R crossing the left-half plane. Thus, presupposing the transform s.(P) being
analytic (regular) on and inside the redrawed contour C except at a finite number
of interior singularities (poles) p. lying in the left-half p-plane the complex im­
proper integral may be replaced by
the corresponding contour integral

0"1 +joo

_1_. I s(p)e'Pdp = _1_. lim I s(p)etPdp for C71 > c
21tJ . - 21tJ R->oo c-

0"1-)00

(3.l55a),

wherein the length of the path C increases without limit as R approaches infinity.
The contour C being decomposed into two portions C, and C2 permits the integra­
tion to be taken term by term, and in the counterclockwise sense

0") + jR

Ic~(p)e'Pdp = I ~(p)e'Pdp+ I
C2

~(p)etpdp
O"I-jR

The transform s.(P) tends to zero uniformly on C2 as R ~ 00 in respect of

Jordan 's lemma

lim Ic ~(p)etpdp ~ 0 for n~ 0
R->oo 2

that means
~(p) ~ 0 as Ipl~ 00 on C2 ,

(3.155b) .

(3.155c),
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because the transform s..(P) is a rational function , additionally a proper fraction
with n > m.

Thus, if R is large enough to contain all poles P. and if R is greater than the
maximum IPkI' then the integral along C is independent of R. Hence, the value of

the contour integral is given by 21tjtimes the sum of the residues of the integrand

at those points. This result is known as
Cauchy 's residue theorem

21tjs(t)= lim fcetP~(p)dp=21tj'tRes[~(p)etP] for r z O (3 .155d).
R.....'" k =l

The proof of theorems on limiting contours, e.g., as R ~ C/J , requires the knowl­
edge of the root locations of the integrand in Eq . (3.150b), i.e. , the interiour sin­
gularities (poles) of the displacement response transform s..(P), Eq. (3.142d,f) must
be defined. Taking up the p-plane geometry of the displacement transfer function
G(p) which characterizes the generalized frequency behaviour of a damped oscil­
lator possessing significant behaviour (asymptotic stability), the characteristic root
location is given by system-poles being generally simple and lying in the left half­
plane, in the case of less-than-critical damping they are a pair of complex conju­
gates PI.2' Eq. (3.18). This results from the characteristic polynomial H(p) being
part of the denominator of the integrand.

Now , however, the denominator consists of two factorized parts the second of
which being due to the driving transform f ro (p) . This factor vanishes, the re-

sponse transform thus cannot remain finite at the "singularities of the excitation" ,
being pure imaginary roots and denoting
the excitation-poles

P3 ,4 = ±jcuf (3.156a)

for a transient sinusoid with the forcing (angular) frequency cu(. In addition
an excitation-zero

POI =-cuftan/POF (3 .156b)

with the force-excitation initial phase /POF due to a non-zero-crossing excitation is
located on the negative real axis , whereby it can be stated, that a zero does not
affect the time response in so direct a way .

Considering the jaraxis as the boundary of convergence of s..(P), i.e., if c =0,
the path of integration may be closed on the imaginary axis , consequently 0'1 =C =
0, provided that the integration through a singularity will be avoided by indenting
the contour. The line segment C 1 thus will be traced with small semicircles of ra­
dius r around the excitation-poles P3.4' Fig. 3.17.

Including in the proof of theorems on limiting contours that the integrand is
bounded in absolute value as r ~ C/J, [36] , [37], [41], the value of the contour
integral is given by Cauchy's residue theorem, Eq. (3.155d) .

Before carrying out the residue calculus a representation of the response trans­
form s..(P) being an alternative to the ratio of polynomials, Eq . (3.142f), is given by
expanding s..(P) into linear factors, called
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C1,C2 Paths
of integration

jlmp=jw

I Region of(absolute)
I - convergence.....r sr(Bromwich path)

I

Rep=a

I P01..
I P4=-jwf
I

(3.142j).

c=O c a 1

Fig. 3.17. Complex p-plane with intended closed curve surrounding either the system-poles p1,2

and the excitation-poles P3,4 = ±jmr in the left-half plane for an inversion by contour inte-

gration referred to transient harmonic response

the factored form of the rational function
r ~\

rr(p- Po) _
( ) = K i=\ = K P POI

sroP s nrr=4( ) S(P-Pl)(P-PZ)(P-P3)(P-P4)
P - Pk (3.142h)

k=\
A Z

FmOcosqJOF p-(-mrtanqJo)
k [p - (-8 + a)] [p - (-8 - a) ] (p - j ta r ) (p + j ca r )

where K, is the response factor, POi ; i = 1,2,... , r ; are caIled the zeros, and

Pk ; k = l, . .. ,n; the poles of s.(P).

Thus, a complete specification of the response transform is given by the r zeros
POi' the n poles P» and the response factor Ks' Since s.(P) is a rational function with
real coefficients, zeros and poles must be real or occur in complex conjugate pairs .

A commonly used method of inverse transformation starting from the factored
form of the rational algebraic fraction continues with the expansion into
the partial fractions

n~4 Rk RI Rz R3 R4sro(p) = L..--=--+--+--+-­
- k=\ P - Pk P - PI P - pz P - P3 P - P4

Accordingly a complicated transform is reduced to the sum of simpler terms being
in shape for the separate inversion by use of transform tables.
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Contrary to the partial-fraction method the method of residues implies an effec­
tive expansion of the inversion formula approach being a direct method since it
provides the evaluation of the Laplace integral directly. Consequently the un­
known algebraic coefficients, usually denoted A, B, C, D and calculated by a
comparison of coefficients, now are determined by the particular coeffi­
cients Ak,_1 of the corresponding Laurent series of the integrand

f (p) = ~ (p )e1p expanded near each of the singular points (poles) Pk . The coeffi­

cient Ak,_1 is associated with the only term Ak,_J/(p - Pk) contributing to the

contour integration of f(p) by surrounding the interiour singularity (pole)

P = Pk in a closed curve. As already pointed out in 3.2.4, this coefficient Ak,_1 is

called the residue of f (p) at P = Pv:- the value of which is denoted by

Res (Pk) = Rk . The residue can be determined by evaluating the limit indicated in

Eq. (3.99).
The outlined method of residues though being rigorous in view of mathematics

will be modified for a practical carrying out of the calculus of residues. By can-

celling the kernel of inverse transformation etp in the complex function f (p) , the

residue will be calculated not of the integrand f (p) of the Laplace integral but

only of the response transform §.(p) , since the limit is evaluated as P~ Pk . In the

case of poles of order one, called simple poles, hence it follows

Res§.(p)=Rk = lim (p-pd§.(p) = [(P-Pk)§.(P)] _
P=Pk P-tPk P-Pk

However , operating with the residue calculus suchlike reduced the imperfect in­
verse transformation must be completed by use of an adapted transform pair for
each term of the expansion given by Eq. (3.142j). With the minor modification the
inversion formula approach adopts the approved partial-fraction method to a cer­
tain extent, and the following response calculation involves the use of an available
transform table.

Thus, by use of factoring process, Eq. (3.142h), the residue of§.(p) at the exci­
tation-pole P = P3' Eq. (3.155a), is easily obtained as

R = K [( - 'w ) p.(p) ] = K p.(jWr)
3 s P J r (p _ jWr )(p + jWr )h(p) , s 2j wr h(jwr)

p= JOlf
A 2

Fwo COSqJOF jw r - (-W r tanqJOF)
k 2jwr[jwr -(-0 +a)][jwr -(-0 -a)]

A 2
Fwo COSqJOF 1- jtanqJOF

k 2[ (0 2
- a 2

- W:> + 2jowr]

where the linear factors are combined into the reduced numerator polynomial of
the response transform, Eqs. (3.142d,f):

r=1

p.(p) =Il (p - Po;) =P - (-wr tan qJo)
i=l

reduced characteristic polynomial

(3.159a)
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n=Z

h(p) = IT (p - Pv) = (p - PI)(P - pz)
v=\

(3.159b).

(3.161)

(-0 + a) - (-OJf tanrpOF) (3. I60b).

[(-0 + a)z + OJn2a

Due to the fact that any rational algebraic fraction j Ip) = P(p)jQ(p) with real

coefficients hi ,ak ,Eq. (3.142e), has the property thatQ(p*) = «i» for allp, the

residues of ~(p) at poles only occuring in complex conjugate pairs are also com­

plex conjugates. Hence, at the excitation-poles P3,4 being a pair of pure imaginary

conjugates the appropriate residues R3,4 are equally related :

R4 =R3" because of P4 =P3" =-jOJf (3.158b),

and the value of R4 results directly from converting Eq. (3.158a) to

R
4=K

P.(-jOJf) =frOJ~COSrpOF l+jtanrpoF
S -2jOJfh(-jOJf) k 2[(OZ _az -OJ~)-2jOOJr] (3.158c) .

By using L'Hospital's rule the limit indicated in Eq. (3.157a) can be evaluated
alternatively by the differential form

Res~(p)=Rk= lim (P-Pk)~'(P)+P(P)=[P,(P)J = P,(Pk) (3.157b) .
P=Pk P-+Pk Q (p) Q (p) P=Pk Q (Pk)

For the special case of a harmonic transient excitation represented by a pair of
poles lying on the axis of imaginaries the denominator polynomial Q(p) will be

reduced to the characteristic polynomial H(p), Eq. (3.147), and a separated factor

(p Z + OJ~) owing to the transient sinusoid

s (p) = pep) Pcp) = K P.(P)
~ (P-jOJf)(P+jOJf)H(p) (pz+OJ~)H(p) s (p z + OJ ; )h(p )

(3.142g) .
Thus, by use of the latter differential form, Eqs. (3.157b), (3.142g), the residue of
~(p) at the system-pole p = PI ' Eq. (3.18), is favourably calculated by

R1=limK[ P.(P) ]=K[ P.(P) ]
P-+Pl S (pz+OJz)h(p)-h(pd S (pz+OJ;)~h(p)

f P-PI dp P=Pl (3.l60a).

=K P.(Pl)

S (PIZ +OJ~ )h'(PI)

First derivative of the reduced characteristic polynomial h(p) w.r.t. p using the

product law:

dhd~) = h'(p)= (p- Pi )+(p- PI)

h'(PI)=PI-Pz
A z

R =K P.(PI) FOJOCOSrpOF

I S (p~ + OJ~ )(Pl - pz) k
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(3.142h).

(3.160d) ,

Case 1: Less-than-critical damping (underdamped system) , PI,2 referred to Eq.
(3 .18) , a= jWd '

R =K (-0+ jWd)-(-wftancpOF) FW~COSCPOF -0+ jWd +wftanCPOF

1 5 [(-0+jWd)2+ wi]2j Wd k 2jWd[(W~-w~)+202_2jOWd]

(3.160c) .
Hence, the system-poles Pl ,2 being a pair of complex conjugates lying in the left

half-plane the appropriate residues R1,2 are equally related :

R2=R j* because of P2=Pl*=-0-jCtJd
and the value of R2 results directly from converting Eqs. (3.160b,c) to

R =K P.(P2)
2 5 2 2 ,

(P2 +Wf )h (P2)

=K (-o-jwd)-(-wftancpOF)

S[(-0-j Wd)2 +wi](-2j wd) k (-2jWd)[(W~-W~)+202+2jOWd]

(3.l60d).
The modified partial-fraction expansion (differential form) for simple poles re­
sults in

s (P)=K{ P.(jwf) I + P.(-jwf) I
~ 5 2jw fh(jwf) P - jWf (-2jwf )h( - jWf) P + jWf

+ nf P.(Pv) _1_}
v=l (p~ + W~ )h'(pv) P - Pv

The actual problem of inverse transformation is now a simple one by use of an
elementary transform pair referred to exponential functions and denoted by the
correspondence

s; L-1
Rep;;;c=O; ---. 0 Rke Pk t

; t ~O (3.162a).
P- Pk

Substituting the transform pair, Eq. (3.l62a), into any term of the partial-fraction
expansion , Eq. (3.142j) , the inverse transformation of~(p) will be performed term

by term.
The first two corresponding terms consisting in a complex (harmonic) expo­

nential and its conjugate can be summarized in a single trigonometric function.
However, it is preferable for response calculation to retain this function in com­
plex notation . By use of the operator Re half the real part of either one of the
conjugates must be taken . Thus, the general solution (complete response) is ob­
tained as the joint result of the first two correspond ing terms, and which is a sinu­
soidal modification of the joint step-response formula, known as
Heaviside 's expansion theorem

S(j)(t)=Ks{Re[ .P·~tf))ejWft]+ nf 2 P·(fv) epvt}; t;;;O (3.163a),
Jmf Jmf v=l (Pv + mE )h'(pv)

, =S(j) 's (t) , ... , =s(j)'t (t) ,
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in which the first term SOlS(t) represents a forced vibration (steady-state response),

and the second SOlI (t) a free vibration (transient response).

Inde ed , this theorem specifying the case of one excitation-pole lying at the ori­
gin (step respon se) has been generalized about a pair of pure imagin ary poles on
the present form (transient harmonic response) , Eq . (3.163a).
Taking up the conc ept of complex excitations and responses (phasor method) of
3.1 .3, the term of steady-state vibration SOlI (t) can be summarized on account of

the phasor of the excitation force f. and its conjugate

F* = Fe- jCP OF = F(COSqJOF - j sinqJoF)

and the displacement response complexor, Eq, (3.54), converted to
2

. W o 1
G(Jwr)=T h(jw f) (3 .164b),

so that the particular actual response can be written in the real part of the complex
response, Egs . (3.57), (3.58), as

( ) - R [GU )FAjwfcosqJ oF+wfsinqJoF jOl fl ]- R [GU ) . F* " .SOl t - e Wf . e - e Wf JWf -.-e
S JWf JWf

= Re[ GUWf )F* e jOl fl ]= IGUwf )1 F Re{eHOl ft-( -arcG(jOl d+ CPO F)]} ; t ~0

(3.164c).
Hence, it foll ows the original or t-domain solution from Eq . (3.163a) by substi­
tutin g Eqs. (3.158a), (3.18), (3. 160c), (3.164c), and the actu al response will be
rewritt en at first in the real part of the complex notation:
Complete displacement response of the underdamp ed system

() FW~ COSqJOF \R { 1- j tanqJOF jOl f1)
SOl t = e [ ] e

k (82 + w~ - wi) + j(28wf )

- 01 { - 8 + jWd + w ftanqJOF jOl dl}). > 0
+ e Re [ 2 2 2 ]e , t =

jWd (Wf - WO)+ 28 - 2j8wd

and finally in real notation:
Complete displacement response f or the oscillator initially at rest

SOl(t)= F

1

2\ 21 ({ cos[ Wft-(\fI+qJOF)]}
~(k-mWf) +(cWf)

, , "--v---'

=!G(jWf)I:::A(Wf) =qJos =-arcG(j Wf) +qJOF

~ :: I~O:~ s;n2~OF~[I~(:~)'}in2 ~OF ,-",ns("'d/~Xl); t >0

(3.163c)
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where ljI eguals Eg. (3.40a) ;
200J r

'P o, = arctan 2 2 + arctan (tan'POF) = ljI + 'POF
OJo - OJr

according to Eq. (3.37b) ;

(3.164d)

200Jd -0 + OJr tan m OFand X =arctan + arctan "t'" (3.164e)
s:-2 2 2

- u + OJd - OJr OJd

which equals Eq. (3.44a) in case of a force-excitation initial phase being omitted
(zero-crossing excitation) 'POF = O.

Case 2: Greater-than-critical damp ing (overdamped system), PI.2 referred to Eq.
(3.25), a = A. .

The response calculat ion equally makes use of the expansion theorem for at
least one pair of pure imaginary poles (of excitation), Eq. (3.163a), by substituting
A. instead of j OJd into the second term. Thus, representing a non-oscillatory tran-

sient response the second term Soot (t) results from the appropriate residues R
'
,2 at

the system-poles P,,2being real and negative (real-roots-case).

Case 3: Considering the limiting condition of critical damping, PI = P2referred

to Eq. (3.31), a = 0 , a remarkable pole configuration occurs as the system-poles
coalesce on the real axis and 0 reaches OJo (repeated-roots case). For this excep­

tional case of second-order system response the expansion theorem, Eq. (3.163a),
being suited only for simple poles, is no more valid.

Generalizing the method of residues to multiple-order poles the partial-fraction
coefficients (coefficient s of the correspond ing Laurent series expansion) of
~(p) at a pole P, can be evaluated by

Ak ._ " = (m k ~ A.)! { dd:
k

k
- _"" [(p - Pk)m k ~(P) ]} (3.157c)

p P=Pk

with the multiplicity (order) mk of each pole P; for n distinct poles where
k = I ,. . . ,n and A. = I ,.. . ,mk '

The particular coefficients associate with the proper number A. = I are identical
with the residues of ~(p) at each distinct pole P = Ps:

Res ~(p) = A k,_1 = Rk for k = I, ... ,n (3.157d)
P=Pk

in conform ity with Eq. (3.157a).
The inverse transformation starting from the fa ctored form of the rational alge­

braic fraction

(3.142k)
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continues with the expansion into partial fractions. In general, for each pole P, of
multiplicity mk there are mk terms

n=4 mk A A = R A R R
Sro(p) = I I k,- A A = l ,-~ I + 1,-2 2 + __2 - + __3 - (3.1421).
- k=1 A;l (p- Pk) (p PI) (p- PI) P- P2 P- P3

In particular, the two coefficients Al,-I = RI ; AI,_2 at the system-pole

PI =-0=-wo of 2nd order (double pole) follow from Eq. (3.157c) for

k = I, mk = 2

AI,-2 = Ks[(p - PI)2 Sro(p)] _
- P-PI

- K [( _)2 P.(p) lJ - K P.(PI) (3.160d)
- s P PI ( )2 (2 2 ) - s (2 2)

P-PI P +Wf P=PI PI +Wf
~ 2

Fwo COSIl'OF -Wo - (-W f tan 1l'0F)

k W~ + w~

I d [( 2 (] d [ P.(p) ]AI,_I = RI = KSl! dp P- PI) Sro p) = K, dp ( 2+(2)
P f P=Pl

= K J!..[ P- POI] = K [(/ +w~)-2p(p-POI)]
s d 2 2 s 2 2 2 (3.160e).

ip (p + Wf) P=Pl (p + Wf) P=Pl
~ 2 2 2

Fwo COSIl'OF (WO + Wf ) + 2wo (-Wo + Wf tan 1l'0F)

k (w~ + W~ i
The already known residues R2 and R3 at the excitation-poles P2 and P3' respec­
tively, are given by Eqs. (3.158a), (3.158c), therein denoted R) and R4•

The actual problem of inverse transformation can be solved by use of an ele­
mentary transform pair referred to the product of positive powers of t and an ex­
ponential function being denoted by the correspondence:

A 1;""1 A-I
Rep~c=O; k,-A A • 0 Ak.-A (l_I)lePkt ;t~O (3.162b)

~-A) .
where k = l, .. . , n and A. = l,... ,mk '

Taking pattern from the general solution form associated with at least one pair of
pure imaginary poles (excitation-poles Pl.)' Eq. (3.163a), the joint result is

s (t)=K({Re[ .P.(j~f) ej rof t
] }

ro s Jwfh(Jwf)

, =sro' (t) ,
s

+ [JL( P.(Pl») + P.(PI) t]e-root); t~O
dp pf + w~ pf + wi -

'" , =sro't (t)

and finally in real notation:
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Complete displacement response of the critically damped system initially at rest

s(j)(t)=F 1 l{cos[wft-('I'+lf'OF)l}
k+mwi \
'-v--' ~

=!G(jWf )1=A(Wf) If'o,=arc G(jWf )+If'OF

-wo{(1-:: tan~OF)c0"Po-c::o[
1 1+(W~Wo/1- ::tan~OF)}}e-"0')

for t~ 0

(3.163e)

2JkmWf 2WOWf
where '1'= arctan 2 = arctan 2 2 (3.164e);

k - mar; Wo - wf

and If'os='I'+lf' OF according to Eq. (3.37b) .

Contrary to the classical method treated in 3.1.2 the general solution obtained
by the Laplace transform method must not be fitted to zero initial values, and the
time-response calculation thus yields automatically the actual displacement as a
zero-state respon se.

Convolution Approach
Due to a causal excitation function, per definition (one-sided transformation), Eq.
(3.93) , the convolution integral in the limits of Eq. (3.152a,b) holds true, whereat
the incidental term vanishes as the initial value of the unit step response, Eq.
(3.89c) , for the proper case of G(p) with m < n (dominant inertia) , Eq. (3.89b). In
consequence of the convolution theorem reduced to the standard transform pair,
Eq. (3.153) , the convolution integral in detail is identical with that of Eq. (3.92b)
in 3.2.3.

Writing the actual displacement response s(j) (t) in an explicit form by use of

the actual transient harmonic excitation, Eq. (3.138a), rewritten as the real part of
a complex notation

F(j) (t) = F COS(Wft -If'o) = ~[{ ej(j)fl + E: e - j(j)ft] = Re[ {ej(j)ft]

the evaluation of the convolution integral results in

t t [ • ]s(j)(t)= fg(r)F(j)(t-r)dr = fg(r)Re E: ej(j)f(t -'t) d r
't ~O 0

= Re[{ej(j)f t!e-j(j) f'tg(r)dr} t~O

For a damped oscillator of significant behaviour (asymptotic stability) the equality
between frequency response function G(p) for p = jz», Eq. (3.145), is valid, so

the response characteristic g(t) in the t-domain is absolutely integrable and defined
as the inverse Fourier transform of G( w) ,

00

G(jw) = fe -j(j)t g( r)d r = L[g( t ),j W] = F[g( t)]
o

(3.l66a)
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and the decomposition of the integral in brackets, Eq. (3.l63g), into the partial
inte grals

t 00 00fe-joo fT g(,)d, = f e -joofTg ( ,)d , - f e-joofTg( ,)d , (3. 167)
00 1

yield s the general solution (complete response)

Soo(t )=Re[i.:e jOO ft j e -jOO fTg(,)d,] -Re[i.: e jOO fl j e-jOO fTg(,)d,]; t~O
T=O T=t

=soo : (t) =SOOt (t )

(3 .l 63h)
in which the first term soos (t) represents a forced vibration (steady-state response),

and the second Soot (1) a free vibration (transient response).

The term of steady-state vibration soos(1) can be summarized on account of Eq .

(3.166a) to the particular actu al response ide ntica l with Eq . (3. 164c).
Writing the unit pulse response g(t) in an explicit form for the underdamped

sys tem, Eq . (3.83a), rewritten as the real part of the complex notation

ge t) = _1_e-1H ~(ejOO dl - e- jOO dl ) = _ 1_e- otRe[ je- jlll dt] ; t ~ 0 (3 . l 66b)
m md ~ mmd

the term of tran sient vibration Soot (1) also can be obt ained in the complex notation

S (1) = _1_Re[ft·e jOOftj oof er-O -j(OOf+OOd)]Td , ]' t ~ 0 (3 .168)
OOt mm - ,

d t

which simplifies the response calculation. Cert ainl y, the unit pul se response also
can be used in real notation . However, the evaluatio n of the con volution integral
then requires an integration by parts performed twice because of an integrand be­
ing a tripl e product of function of time.

Hence, it follows the actual response from the sum of the terms both evaluated,
and in real notation finally designated as the complete response for the oscillator
initially at rest. Thi s result is ide ntical with Eq . (3. l 63c), and also with Eq. (3.44a)
by assumption of zero initial pha se /POF = 0 .

Response Data Plotting. The time history of the osc illatory displacement response (combined
motion) in normalized form is given in Fig. A.4 of the Appendix A.

3.2.10
The Graphical Interpretation of the Transfer Function .
Conformal Mapping

The Laplace transform method has prov ed its usefuln ess for graphic al system rep­
resentation in terms of block diagrams . The interre lation of functional blocks is
connected with the transfer fun ction concept being already introdu ced in 2.1 .1.

In addition , the advantage of the Laplace tran sform to convert linear differen­
tial equations into algebraic equations prov ides an effective method of response
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calculation for systems affected especially by transient excitations (time-response
analysis). This is carried out in 3.2.9 for evaluating the actual displacement re­
sponse to a harmonic shock excitation by use of the known p-domain-response
characteristic, the transfer function . However, the algebraic description of dy­
namic system's behaviour enables not only the portrayal of block diagram struc­
tures or the graphical representation of complete actual responses in the t-domain
(time history curves) .

In system (or vibration) analysis and design the key role is played by repre­
senting the dynamic behaviour of systems in the w-domain (frequency-response
analysis). The graphical interpretation of the transfer function leads to a concise
graphical description of a system's frequency response characteristic as pointed
out by the following sections.

Transfer-function Analysis by Special Types of Forcing Functions
Besides the great importance of sinusoidal excitation special types of aperiodic
input functions are useful mainly dealt with in controls. Those types also present
an approach for modelling vibrations and are classified as singularity functions. In
electric circuitry such a kind of (whole) functions is called typical waveforms. It
concerns functions continuously varying in time except for a certain initial time,
usually occuring at zero time t =0 , and they can be obtained from oneanother by
successive integration or differentiation . Singularity functions being reduced to
abstract input variables designated as "non-dimensional quantities" are not suited
to modelling until they are defined as dynamic system variables classified in 1.2.
Thus, special types of inputs applied to a translational mechanical system are indi­
cated as normalized external forces. A convenient normalization can be derived
from the forcing function F(t) by relating it to a pertinent reference quantity.

The normalized excitations most used in the analytical investigation of system
transient response are the unit step or Heaviside function uo (t), and the unit pulse

OCt) . In vibration analysis suchlike idealized step- or pulse-type excitations are
often used as reference input and experimentally realized as a constant force ex­
citation (simple step force), or with some investigation into impact-excitation
technique, as a short-duration pulse force also applicable to large structures .

(3.169).
I

f8(r)dT = I

Unit Pulse. A rectangular shock pulse at t =0 idealized by the impulse value of
unity and zero pulse duration is called unit pulse, Dirac or delta function 6\t) , Fig.
3.18a. This normalized shock excitation is defined as the inverse Laplace trans­
form of unity denoted by the correspondence

L-1 {O for t '1= 0
!J.(p) = I. 0 8(t) =

00 for t = 0

-00

The delta function can be regarded as the result of a limiting process basing on
a rectangular pulse of small pulse duration r 0 and large amplitude equal to 1/t:0 .

As TO ~ 0, the amplitude tends to infinity, but in such a way that the impulse
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a

F(t)/F. 1
+1

oCt)

t 0

S~t) =Y5(t)=g(t)
-1

o

+11r---f-T""lr........./-

F(t)/Fo

~t) =yuO(t)=h (t)
=====~_.L-_--;-. 0

b

c

F(t)/F1

+1+--:>I"t--r
~t) =YU1(t) =k(t)

1

Fig. 3.18. Singularity functions and normalized responses of an underdamped system. a Unit
pulse; b unit step; c unit ramp

(pulse area) remains constant and equal to unity. The singularity of a one-sided
rectangular pulse can be depicted as a thick solid line and a single white arrow
denoting the value of the impulse, Fig. 3.18a, showing the symbolic graph on the
right side.

It should be stated that the Laplace integral, Eq. (3.l35a), is only true as an in­
tegral in the analytical (Riemann) sense for function s not involving singularities.
On the rigorous basis of generalized functions the delta function o(t) is interpreted

as a delta functional and the inverse Laplace transform as a distribution [36], [38],
[39].

From the transformed zero-state response to an idealized rectangular pulse
forcing function F(t) = F_10(t)

~( p ) = F_1Yo(p) = F_1G(p) ·l = F_1G(p) (3.170)

it folIows the important property that the transfer fun ction G(p) equals the pulse

response transform ~(p) by relating it to the impulse (pulse force area)

F_1 = FOTo :

G(p) = F_1Yo(p) = Yo(p) = L(yo(t)] = L[g(t)] (3. l7 l a).
r.,
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Thu s, the normalized pulse response Yo(t) is identical with the unit pu lse response

(weighting function) get) .

Unit step. A suddenly rising constant exci tation at t = 0 ideali zed by the maxi­

mum height of unity and zero rise time is called unit step or Heaviside function
Uo(t), Fig. 3.18b. This normalized transient excitation con stitutes an elementary

transform pair denoted by the correspondence

I L-1 {O for t < 0
Uo( p ) = p. 0 Uo(t ) = I (3.172).

for t > 0

From the transformed zero- state respon se to a rectangular step forcing functi on
F (t ) = Fouo(1)

1
~(p) = FOY

u Q
(p) = FoG(p)Uo(p) = FoG(p)p (3.173)

it follows that the transfer function G(p) equals the step response transform

~(p) multiplied by p by relating it to the maximum height (constant force ) Fo :

FoYU (p)p []
G( p ) = }o = pYu Q (p ) = pL YU Q (t) = pL[h(t )] (3.17 1b).

Thus, the normalized step respon se Yuo (t) is identical with the unit step response

h(t ) , finally on account of the differentiation theorem, Eq. (3.139a), the first de­

rivat ive w.r.t. time of the unit step response Ii (t ) equals the unit pulse re­

spons e g(t ) , Eq. (3.89a). Conversely, the unit step response is the integral of the

unit pulse response corresponding to the integration of the singularity function

t

uo(1) = f8( r ) dr
I

h(t ) = fg( r ) dr (3.147a) .

(3.175).

Unit Ramp. A con stan t slope excitation at t = 0 reta ining finite rise time ideal­
ized by the maximum slope of unity is called unit ramp ul (t) , Fig. 3.18c. This

norm alized transient excitation con stitutes an elementary transform pair denoted
by the correspondence

I L- I {O for t < 0
U I (p) =-2. 0 U I (t) = ret) =

p t fur t~O
From the transformed zero-state respon se to a linearly increasing forcing func­
tion F( t ) = FJ ul (t) , written in a compact form by use of III (t ) = t • lIo (I) (synthe-

sizing property of unit step by annih ilating any portion of F(t ) for t < 0 )

~(P)=FIYu l (P)=FIG(P )UI (P)=FIG(p)~ (3.176)
p

it follow s that the tran sfer fun ction G(p ) equal s the ramp response transform

~(p) multiplied by l by relating it to the maximum slope (rate of force rise)
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(3.174b).
I

k(l)= ffg(r)d 2r

Fj = Fo/ro :

F1fu (p)p2 []
G(p) = IF, = p2 YU1 (p) = p2 L YU I (I) = p2L[k(l)] (3.171c).

I

Thus, the normalized ramp response Yul (I) is identical with the unit ramp re-

sponse k(t), finally on account of the differentiation theorem for higher deriva­

tives, Eq. (3.139a), the second derivative w.r.t.time of the unit ramp re­

sponse k (I) equals the unit pulse response g(t) . Conversely, the unit ramp re­

sponse is the double integral of the unit pulse response corresponding to the suc­
cessive integration of singularity functions

I

r(l)= ff 8(r)d 2r

-00 -00

Exponentially Swelling Unit Sinusoid. A suddenly rising sinusoidal excitation at
t = 0 the "amplitude" of which swells exponentially (increasing envelope) ideal­
ized by the initial amplitude of unity and zero rise time is called exponentially

swelled unit sinusoid (section) eC1 rlu", (I), Fig. 3.19a. This normalized transient

excitation in complex notation of sectional complex exponentials constitutes a
sum of elementary transform pairs denoted by the correspondence

From the forced vibration (steady-state response)

sps (I) = Re[ G(Pr )Fepr ' ] = Re[ ~ ePr l
] ; for t > 0

(3.177) .

(3.178)

caused by a generalized transient sine forcing function F(t) at the complex fre­

quency ("of the drive") Pr = eTr + jliJr, written in a compact form by use of

eC1 rlu", (t) =(e C1 r l COSliJrt). Uo(I) (synthesizing property of unit step):

F(I) = FRe [e Pr l ] . Uo (I) = Fe C1 rl u", (I) (3.179)

it follows that the transfer function G(p) at p =Pr equals the complex ratio of the

displacement response phasor at zero time ("initial phasor") ~ to the phasor of the

excitation force F = F :

s s
G(Pr) = -: = -:

F F
(3.171d).

To each complex frequency Pr a single response ratio of phasors is assigned be­

ing identical with a particular value of the transfer function G(p) = G(Pr) .
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/I

F(t )/F

+1L-_:r~
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/I

F(t)/F
1

b

+1

o
-1 1-+'''''''---+~7'C

- 1

Fig. 3.19. Special types of forcing functions. a Exponentially swelling sinusoid; b sinusoid
section

Indeed, an exponentially swelling sinusoid (0" r > 0) may be considered as a

valid concept of interpreting the generalized comp lex frequency response
G(p ) but with regard to growing up excitation functions without any practical

purpose of vibration data analysis. To the contrary decaying-ampl itude function s
(0" r < 0), favo urably the following constant-amplitude excitation (0" r = 0) , hold

both an interpreting concept and a practical purpose.

Unit Sinusoid Section. A sudde nly rising sinusoida l exci tation at t = 0 idealized
by the amplitude of unity and zero rise time is called sinusoid sectio n uCiJ ( t) , Fig.

3.19b. Thi s normal ized transient excitation in complex notation of sectional "har­
monic" exponentials constitutes a sum of elementary transform pairs denoted by
the correspondence

U ()=1[_ 1_+ 1 ] . L-
1

0
Cll P 2 p - jmr p+ j mr

(3.180).
From the forced vibration (steady state response)

sCiJ s(t) = Re[GUmr)Fe jCiJ fl ]=Re[ie jCiJ fl ] ; for t>O (3.181)
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caused by a transient sine forcing function F(t) at the forcing (angular) frequency

W r ' written in a compact form by use of Uro (t) = (cos W rt) • Uo (t) (synthesizing

property of unit step):

F(t) = FRe[ejrof l
] . uo(t) = Furo(t) (3.182)

it follows the important property that the transfer function G(p) at p = ja> r, or in

respect of p being replaced by ja>, thus the frequency transfer function
G(ja» auo =a> r equals the complex ratio of the displacement response phasor i
to the phasor ofthe excitation force E. = F :

G(Pr)1 _" = G(jwr) = ~ = ~
Pf-Jrof F F

To each forcing (angular) frequency wr corresponds a single response ratio of

phasors assigning a particular value of the transfer function (termed a complexor):
G(jw) = GGwr) '

Complex System Parameter
Vector Representation of Phasor Ratios (complexors). Returning to the vector
representation of sinusoids, 3.1.3, the actual response in the steady state, (forced
vibration) can be gathered solely from the one complex system parameter, the
displacement-response phasor, Eq. (3.53), as demonstrated by use of phasor
method. Thus, in diagram representation the steady-state interrelation is figured in
terms of constant (resting) phasors, corresponding to the system variables, which
form the resultant phasor defined as complexor. By reason of causal systems, es­
pecially for a passive mechanical system, the phasor of the displacement re-

sponse ilags the phasor of the excitation force t: = Fby the displacement phase

angle 'Pos ' Fig. 3.20a.
The magnitude lsi of the response phasor ~ denoting the displacement ampli-

tude 05 of the forced vibration is obtained by multiplying the amplitude of the ex­
citation force phasor by the modulus of the frequency transfer function, Eq.
(3.38a)

I~I = 05 = IG(jwr )11f..1 = A(wr )F (3.183a).

The angle (or argument) arc ~ of the response phasor ~ designating the phase

angle 'Pos of the forced vibration, thus fixing the phasor direction, is determined

by adding to the phase angle 'POF of the excitation force phasor the argument of

the frequency transfer function

arc~=-'Pos =arcG(jwr)+arcf..=-lf/l-'PoF =-If/l ; 'Po F =0 (3.183b)

in particular identical with the phase difference If/) , Eq. (3.40a,b) .

By forming the complex ratio of the displacement-response phasor ~ to the pha-

sor of the excitation force i: the resulting complex system parameter may be
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/I /I
jim [E,§l
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E=F Re[E,§l
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/I /I
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/I /I
arc G(jwf)=arc §-arcE=
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/I

G(jwf )= ~
E

Fig. 3.20. Complex representation of sinusoidal steady-state response. a Phasor diagram of
displacement response and excitation force; b diagram of displacement-response complexor
(dynamic compliance)

identified with the displacement response complexor G(j wf) , in conformity with

Eqs. (3.54), (3.171e).
The complexor also can be thought of as a vector locali zed at the origin (radius

vector) in a complex plane where the magnitude ofthe complexor is denoted
the displacement-respon se factor A(wf) , Eq . (3.55a)

IG(jwf)1 = A(wf) = lil/ltl = sfF (3.1 84a) ,

which in brevity is called the amplitude ratio, and the (angle) argument of the
complexor fixing its direction is identical with
the phase difference (phase shift) If) , Eq. (3 .56)

arc G(jw f) = -If\ = arc ~ - arc t: = -({J0s + ({J0F = - ({J 0s ; ({J0F = 0 (3.184b).

An evident definition with reference to the physical interpretation of complexors
infers from the pair of dynamic system variables being measured or defined at the
terminals of the model system. The underlying translational mechanical system is
represented by the relation between an applied force and a resulting motion ex­
pressed as displacement. The ratio of the pertinent phasor quantities defines
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the dynamic compliance ~(jme)

G(jmc) = ~/f.. = Qjmc) (3.185).

It is also called the receptance a by several authors, see 4.2. It should be pointed
out that the relation between the displacement phasor and the force phasor de­
pends on the angular frequency m, thus, the resultant phasor changes both, its
length and its direction, as m varies from 0 to 00. For each frequency variable as­

signed to a particular forcing frequenc ca = me the corresponding com­

plexor G(jmc) may be plotted as a single point in the complex plane, called, in

this case, the dynamic compliance plane, Fig. 3.20b.

Polar Representation of the Frequency-response Characteristic
As m varies the radius vector revolves clockwise about the origin and Eqs.
(3.183a,b) constitute the polar equations of the frequency-response function (or
frequency transfer function) G(jm) , Eqs. (3.78a), (3.145), traced by the locus of

the vector's tip. The frequency locus plot connecting all the points which repre­
sent the totality of forced vibrations (or sinusoidal steady-state responses) for
varying forcing (angular) frequency is called the polar frequency response locus,
in controls termed in short the polar plot, Fig. 3.20b, dashed curve.

Contrary to the complex ratio of two phasors (complexor) G(jmc) , introduced

in 3.1.3 for sinusoidal quantities at the same frequency , the frequency -response
function G(m) has been generally defined for deterministic vibrations in 3.2.3, in

addition involving random vibrations in 3.2.5, as the quotient of two Fourier
transforms , Eqs. (3.79), (3.115). Thus, a more profitable interpretation of the polar
plot tends to the actual response s(t) related to the excitation function F(t) by

graphically representing the ratio of their Fourier spectral densities (continuous
spectra) ~(m) , f.( m) . Respectively, the relation between the cross-correlation

function at F(t) and s(t) and the autocorrelation of F(t) can be figured by the
ratio of their power spectral densities SFs (m) , SFF (m) . Varying in ca over the

definition range of the related Fourier transforms the frequency-response function
G( m) does not depend on the type of excitation function. Beyond the analysis of

sinusoidal steady-state behaviour basing on the sweeping of a forcing frequency
range the vibration data analysis can be performed by applying a transient func­
tion (shock excitation) or a stochastic process (random excitation) defined as ref­
erence input.

Just for the system identification of mechanical structures the requirements of
data processing are more efficiently satisfied by virtue of frequency concepts
basing on non-periodic and random vibrations (spectral analysis), 3.2.2, 3.2.4,
3.2.5.

Conformal Mapping. An equivalent polar plot of the transfer function G(p) being

a rational function of the complex variable p (or s) can be deduced from the
method of conformal mapping . Starting from a vector diagram which presents the
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characteristic polynomial in factored form, Eq. (3.159b), the linear factors are in­
terpreted by a vector subtraction . Basing on the complex-roots case the vectors
have their tails respect ively at one of the two system-poles PI' P2' and their heads
both at the fixed point p. Thus, the transfer function , Eqs. (3.172), (3.83a), can be
calculated at the single complex frequency p by use of vector properties , in par­
ticular of multiplying operations on complex numbers, Fig. 3.21a.

Though being valid for the total range of the complex frequency p the vector
calculus may be done in practice for a frequency range of interest referred to the
"complex frequency of the drive", [3], [27 to 29].

The point G(p) corresponding to a fixed point p is called the image point with
respect to the mapping defined by the analytic function (or corresponding func­
tion) G(p). If the point p moves along a straight line 0"1 = canst (level curve) in

the p-plane, the corresponding point G( 0" 1 + j (())will travel along a curve that

jlmp=jw"

I Level curves ofoio

a

:t---h"-lf-:-;--+-r-~-I- w3

Point .t--t--t-I- w
2p=a1+jw

:t--+-~h--t--t--I-w1

-0 Rep=a

b

jim G(p) =
=jV (a,w)

Analytic function:
G(p)- 1 _ .1 1

- mp2+cp+k - m (P-P1)(P-P2)

Image point
G(p)=G(a1+jw)

arc G(p)

Re G(p)=U(a,w)

a,w- imagecurves

Frequency response locus
(Polar plot)

Fig. 3.21. Transfer function graphically illustrated by the CT,w-field map. a Complex represen­
tation in the p -plane by the root loci vector diagram ; b image curves in the G(p )-plane



www.manaraa.com

176 3 System Representation by Equations

defines the image of the level curve in the G(p)-plane (or transfer-function plane),
called accordingly in this case the generalized dynamic compliance plane , Fig.
3.21b. Mapping the upper right half-plane (J > -0 onto the G(p)-plane the image
curves form a set of corresponding field lines (loci of constant (J) and a conjugate
set of "equipotentials" (loci of constant m). Those curvilinear squares are inter­
preted as the polar plot (referred to (J = 0) with its accompanying a.oi-field map.

The image of a small figure conforms to the original figure in the sense that it
has approximately the same shape. So the images of the level curves intersecting
at right angles (rectangular grid) make the same angle at each point of intersection
(orthogonal grid). Thus, the mapping onto the G(p)-plane is said to be angle­
preserving (conformal), [44].

3.2.11
The Graphical Interpretation of the Frequency-Response Function.
Frequency Response Plots

The 0; m-field map suited for the graphical interpretation of the transfer function
G(p) also can be used for illustrating frequency-response curves. For this purpose
let the point p move along the line (J = 0 in the p-plane and the corresponding
point G(jm) will travel along a curve that defines the image of the imaginary axis

onto the G(p)-plane. Thus, the field line specified for (J = 0, indicated in Fig.
3.21b by the dot-dash line, is identical with the polar plot appertaining to the fre­
quency-response function of the system G(j m) .

Polar Frequency Response Locus (Nyquist plot)
Supposing a second-order linear system of significant behaviour the two charac­
teristic roots (system-poles) PI' P2 constantly lie in the left-half plane. Thus, the
region of convergence of G(p) contains the jzo-axis in its interiour, i.e., if c < 0 the
equality, Eq. (3.145a), holds true with reference to G(m) being associated with

G(jm) .

The graphical representation of the frequency -response function by its polar plot
in the complex G(jm)-plane (Nyquist-plane) presupposes specifications of

- the dynamic variable quantities defined or measured as the excitation and the
response function;

- the pair of points in space referred to excitation and response terminating the
dynamic system model (input and output terminals) .

Driving-point versus Transfer Response Characteristic. The frequency-response
function is a complex system parameter which is referred to a point i or j in a lin­
ear time-invariant system where excitation and response may be taken at the same
point or at different points in the same system. The considered translational me­
chanical system is represented by a motion response and an excitation force. The
motion of the translational system occurs in response to any forcing function of
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time which may be either a harmonic (sinusoidal) or perodic excitation, or else a
transient or random excitation. Since the motion response and the excitation force
are taken at the same point i or j in the same system the frequency-response func­
tion is defined with respect to auto-spectral analysis by the quotient of two Fou­
rier transforms taken from the functions of time at the excitation point (input ter­
minal), thus termed
the direct (or driving-point) frequency-response function

. . F[sj (t)] si (z») s/m)
Gii (Jm)= Gjj(Jm)= F[Fj (t)] = Fj (m) = Fj(m)

In the specified application of a simple harmonic excitation the frequency­
response function is formed by
the response ratio ofphasors (complexor)

Si Sj
Gjj(jmf)=Gjj(jmf)= A = A =Cjj(jmr) (3.186b).

Fj Fj -

The motion response being expressed in terms of a displacement the correspond­
ing phasor ratio at the same point i or j is designated the direct (or driving-point)
dynamic compliance (or direct receptance) of a structure ~ij (j to f) .

Since the motion response is taken at one point in a system and the excitation
force is taken at another point i * j in the same system the frequency-response

function is defined with respect to cross-spectral analysis by the quotient of two
Fourier transforms taken from the functions of time at different points, i.e., the
response transform at point j (output terminal) to the excitation transform at point
i (input terminal), thus termed
the transfer frequency-response function

. F[s/t)] sj(m)

Gij(Jm)= F[Fj(t)] = Fi(ro)

Specifying a simple harmonic excitation the frequency-response function is
formed by
the response ratio ofphasors (complexor)

s·
Gjj(jmf)= fr. =Ci/jmr) (3.187b).

I

The motion response being expressed in terms of a displacement the correspond­
ing phasor ratio at the different points i and j is designated the transfer dynamic
compliance (or cross receptance) of a structure ~jj (j to f) .

Reciprocity. Operating on a linear elastic structure the excitation can be removed
from i and placed at j , then the previous displacement at j will exist at i. Thus ,
equality between corresponding pairs of transfer dynamic compliances being
measured or determined by definition is confirmed between i and j , and the prin­
ciple ofdynamic reciprocity is valid stating that

~ij (jru) = ~jj (jru) (3.187c).
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It indicates that a mechanical structure can transmit energy equally well in both
directions (two-way energy transmiss ion systems).

The excitation may be, alternately, force applied to the system or motion of the
foundat ion that supports the system. Since the significant response is given by the
resultant force to an exciting motion if proves convenient to invert the quotient of
Fourier transforms, in particular to form the inverse phasor ratio, defining
the reciprocal of the direct and the transfer f requency-response fun ction

- I . F; (w ) - I . F; .
G j j (Jw)= ( ); Gjj (JWf)= A = K jj(JWf) (3.188a,b)

Sj W Sj -- -
and

F
Gjjl(jWf) = s< = Kjj(jWf)

J -
(3.I89a,b).

(3.191).

(3.193).

The exciting motion being expressed in terms of a displacement the corresponding
phasor ratios at the same point or at different points in the system are designated
the direct and the transfer dynamic stiffness of a structure Kjj (j wf ) and

Kij(jWf), respectively . Neverthele ss, Eqs. (3.188a,b), (3.189a,b) hold equally

true in case of a mobility measurement by exciting with a force at a single point
(constant-force generator) and measuring the translational response motions on
the structure.

The motion response being expressed in terms of a velocity the phasor ratios of
the resulting velocity to the driving force at the same point or at different points in
the system are, corresponding to Eqs. (3.l 86b), (3.l 87b), designated the direct and
the transfer (mechanical) mobility of a structure .Li(j w f ) and I ij(jw f) • respec­
tively

u- u -
AI = Y;j(jwf) (3.190) A

J
= Y;j(jWf )

F; - F;

The mobility , sometimes termed the mechanical admittance following the re­
sponse ratio concept of electrical circuits, can be expressed alternately by its re­
ciprocal, i.e., in terms of the mechanical impedance ~(jw f) ' Taken at the same

point or at different points the inverse phasor ratio will be specified as the direct
and the transfer mechanical impedance of a structure~ii(jwf)and ~ij(jWf),

respectively

F
A l =Zjj(jwf) (3.192)
U j

The direct impedance indicates whether a structure resists (absorbs) the vibration ,
whereas the transfer impedance shows if the structure transmits the vibration or
isolates .

Example 3.1: Forced Vibration due to Motion. The model system of a simple oscillator intro­
duced in 3.1 can be used to illustrate the frequen cy-response function referred to alternat ive
exc itation at different points in space, Fig. 3.22.
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Fig. 3.22. Damped single degree-of-freedom system. a Harmonic excitation acting indirectly
on the mass (spring-controlled); b acting directly on the mass (force-controlled)

(3.194a).

In case of an excitation displacement u(t) at point I acting indirectly on the mass m over a
spring k (spring-controlled), the mechanical system is governed by the equation of motion

ms = -cs- k(s- u)

ms+ cs + ks = ku = Fs(t )

A harmonic excitation of motion u(t ) = itcos(eu rt - rp Ou ) causes a suchlike excitation of

force ~ (t) = ku(t) which is represented by the complex excitation f s(t ) according to Eq.

(3.49), but with the force phasor F = k ii
- 5 -

(3.195a) .

Substituting Eq. (3.195a), into Eq. (3. I94a) the phasor representation introduced in 3.1.3 results
in the phasor equation

-meu~ ~ + j ceu r ~ + k~ = i; (3.196a).

The sinusoidal steady-state response is described by the displacement-response phasor ~ .

Specifying a harmonic excitation and taking the motion response and exci tation force at the
same point 2 the direct fr equency-response fu nction G 22 (j eu ) at co = to r is defined as:

G22 (j eu r ) = . 1 2
k + Jceur - meu r

forming the response ratio ofphasors (complexor )

(3.197)

(3.198a) .

(3.194b).

1 1
-kl ' c m 2+ Jyeu r - y eu r

-l 1

k 1+ · 2...L~ _ (~)2
J Wo Wo Wo

With respect to motion response in terms of a displacement the complexor, Eq. (3.198a), de­

fines the driving-point dynamic complia nce e22 (j to r ) .

Example 3.2: Forced Vibration due to Force. In case of an excita tion force F(t ) at point I
acting directly on the mass m (force-controlled), Fig. 3.22b, it follows the equat ion of motion

ms = -cs - ks + F(t )

ms+ cs + ks = F (t )
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The harmonic excitation of force F(t) = F cos(mft - tpOF) is represented according to Eq.

(3.49) by the complex excitation fJt) with the force phasor E..
E..(t) = f..ej(fJ fl

So it follows by Eqs. (3.194b), (3.195b) the phasor equation

-mmi~ + j cm f~ + k~ = i
Specifying a harmonic excitation and taking the motion response and excitation force at the

same point I the direct frequenc y-response function Gil Um) at to = m f is identically de­

fined by Eq. (3.198a), forming the response ratio ofphasors (complexor)

(3.198b)

and being designated the driving-point dynamic compliance CII Um f) .

Frequency Response and Frequency Normalization. A tool of vibration data
analysis being of considerable usefulness and convenience is normalization which
means adjusting the scale of a function or of a variable to a new value. In the op­
eration of data processing for obtaining frequency-response characteristics the
frequency transfer function GUm) including the frequency variable to will usually

be changed in dimension , preferably it becomes a "non-dimensional quantity"
(quantity of dimension one).

It is a fundamental property of linear systems that magnitude and angle of the
response phasor L Eqs. (3. I83a,b), are independent of the magnitude of the ex-

citation phasor f... (and the initial condition s so' so) . By reason of that the re­
sponse ratio of phasors (complexor) GUm f ), Eqs. (3.186b), (3.187b), can be

adjusted in variable and scale at each forcing frequenc y to f . Hence, this also

holds true for the frequency-response function G(m) = GUm) , Eqs. (3.186a),

(3.187a) , over its total range of frequency values to to be performed in several
steps. Separate steps are already introduced in 3.1.1, at first by defining the system
parameters (vibratory specifications) 0, s: mo' Eqs. (3.3), (3.5), (3.6a). Moreover,
it is convenient to normalize the variable "forcing (angular) frequency" to f by re-

lating it to the undamped natural frequency mo' thus in effect by transforming to
the frequency ratio 1], Eq. (3.39), as the new variable . This transforming step has
been previously applied in 3.1.2 to the "displacement-response factor" A(mf)'

Eq. (3.38a), for gaining the magnification factor Rd , Eq. (3.38b), as the new non­
dimensional amplitude ratio. In quite a similar way the complex frequency­
response function GUm) can be transformed into a function of the new variable

1], [49].
The constant quantity GUm f ) at mf = 0 defines the static response fac-

tor G(O) . This real particular parameter, to be adjusted as the (proportional) "gain

of the system", is, in this case, identical with
the compliance ofthe spring

Ck = ljk (3.199a).
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If the complex system parameter G(jwrlwo) varying with 1] will be related to

the multiplying constant G(O) the transformation finally results in
the normalized response ratio ofphasors (normalized complexor)

~(j~)-(i]fi-l)_ik_ik_y;(.)- I
- ~ - ~ - ~ - k HI -

Ck r; k F:; f.. - 1+ j 2s 1]1 - 1]~
- -

The motion response being originally expressed in terms of a displacement the
corresponding normalized phasor ratio (at the same point i) is designated
the normalized (direct) dynamic compliance (or direct receptance) of a structure

r k (j 1]I) '

This new function is expressed in terms of only two quantities, the frequency
ratio 1] and the damping ratio S. It turns out that by normalizing of frequency vari­
able and of response ratio of phasors (complexor) the number of parameters can
be diminished by relating element parameters to form system parameters, moreo­
ver the parameter values can be reduced to an order of unity, making otherwise
long and tedious computations relatively simple. Thus, the normalizing transfor­
mation of frequency responses proves useful as a convenient data reduction
method to the frequency domain.

Interpreting Remarks to Normalized Polar Plots. Using the vector representation
of response phasor ratios the frequency response can be plotted in terms of polar
coordinates by the locus of the tip of the displacement-response complexor (dy­
namic compliance), Eq . (3.l98b), as the driving frequency wrChenceforth

equivalent to w) varies from 0 to 00, Fig. 3.20b.

An alternative interpretation of polar plotting was given by the image of the
imaginary axis of the complex frequency plane (p-plane) onto the transfer­
function plane (G(p)- or generalized dynamic compliance plane), Fig . 3.21b.

By successively transforming from (Of into the new frequency variable 1], fur­
thermore from ~ii (j W f) into the new frequency-response function r k (j 1]1) the

displacement-response complexor will be normalized, Eq . (3.198c), and finally
the adjusted (data-reduced) polar plot of r k (j1]) can be traced out as the fre-

quency ratio 1], (henceforth equivalent to 1]) varies from 0 to 00 .

With respect to the Nyquist stability theorem applied to open-loop transfer
functions in controls the polar plot being sketched on uniform scales is termed the
Nyquist plot (after Harry Nyquist).

Response Data Plotting. The polar frequency-response loci (Nyquist plots) of normalized dy­

namic compliance rk(j 1])are shown in Fig. B.I of the Appendix B.

The newcoordinates beingpolar coordinates of magnitude and phaseare differently scaled.
The polar radii of (vector) magnitudes are uniformly scaled in absolute numbers, and the
(negatively) oriented angles of (vector) directions are uniformly scaled in the unit degree, thus
generating thecomplex rk (j 1])-plane(Nyquist plane)as a circular curve chart.

The effectof the system parameter damping ratio S on thefrequency-response characteris­

tic (directdynamic compliance or direct receptance) ~ii (j w) is represented graphically in the
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normalized form Xk (j '7) by a set (or family) of polar plots for various amounts of damping .

The damping effect is indicated by the change in dynamic compliance of a structure, i.e., by the
change in displacement amplitude and phase related to the constant-amplitude force.

Specifications ofPOUlr Plots. A polar plot (Nyquist plot) is specified by
- the curve shape (base of a range of loci);
- the frequency scale of the curve (index numbers of frequency);
- the shape signature at high and low f requencies (initial slope and termination asymptotes).
Respecting the polar representation of a set of normalized frequency responses the adjusted
curve shapes are defined by the loci (hereat bicircular quartics) for selected damping ratio val­

ues' = canst .and the frequen cy scales are outlined as intersecting curves for selected fre­

quency ratio values '7 = canst. The portrayed loci and frequency lines thus generate the cel­

lular-type structure of a meshwork. Nevertheless, it should be pointed out that the traced loci
are parametric curves associated with the same specified field line referred to a = 0 (image of

the imaginary axis), though for different ,"parameter values. Accordingly the presented para­
metric curves form a non-orthonormal meshwork contrary to the (T,w-field map formed by im­
age curves for different rr-values, Fig. 3.21b.

The shape signature is portrayed by a locus starting perpendicu larly to the real axis from
unity (normalized static response) at '7 = 0, and terminating asymptotically on the real axis in

the origin at '7 = 00 . The terminal slope of asymptotic approach depends on the frequency

response being a ratio of two polynomials such that the degree n of the denominator is greater

than m of the numerator, Eq. (3.89b). For n - m = 2 ,related to the present function Xk (j '7) ,
a sluggish dynamic behaviour dominates caused by a quadratic or second-order factor as de­
nominator. Hence, a low-pass filtering property is indicated with a flat-tuned (hazy) bandwidth .

n, = w r / Wo = ~l- 2,2 (3.39a).

The (displacement) resonance frequency w, is lower by a small amount than the
damped natural frequency Wd' Eq. (3.19a).

The singular value of forcing frequency W f = wo, defined in 3.1.2 as the con-

dition of resonance, pertains to a phenomenon sometimes called resonance of
phase . This is a consequence of the fact that the phase angles are 90° for all
amounts of damping . The resonance frequency ratio '10 = 1, Eq. (3.46a), referred

to the (displacement) phase is associated with the radius vector's orthonormal
direction to the real axis. The geometric locus of rectangular arguments (phase
lags in quadrature) coincides with the (negative) imaginary axis.

Significant Frequencies of Resonance. Resonance of a system exists when any
change, however small, in the forcing frequency causes a decrease in the forced
response. This phenomenon, sometimes called resonance of amplitude, is associ­
ated with the radius vector's greatest length coinciding with a rectangular angle of
vector and tangent to the polar plot at point of tangency . The geometric locus of
the maxima of magnitudes (greatest displacement-response factors) according to
the greatest compliance values for various amounts of damping (dash-and-dot
line) indicates the resonance frequency ratio referred to the displacement ampli­
tude

Qfactor and Bandwidth. In resonance testing it is convenient to obtain a measure of damping

by determining the amplitude of vibration at resonance. Conversely, if the amount of damping
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is known it is simple to make an estimate of the amplitude of vibration at resonance. Inserting
Eq. (3.39a) back to normalized frequency response, Eq. (3.198c),
the maximum compliance magnitude is obtained

IYk(j1J)1 =(Rd)max = IRI ' < ~.fi (3.39b)
max 2' 1-,2 2

being in conformity with the peak of the magnification facto r and which, for small So can be
approx imated by

IYk (j 17)1
l10

= Q= 2~ = 2C/C
c

(3.39c) .

The compliance magnitude specified by the resonance f requency ratio 17 = 170 =1 is known as

the Q facto r (quality factor) . This term attributed to electrical circuitry is a measure of the
sharpness of resonance. For a resonant oscillatory single-degree-o f freedom system, either me­
chanical or electrical, the Q factor amounts to large numbers thus indicating small values of
damping. This vibratory speci fica tion, Eq. (3.39c) , is used for determining the equivalent vis­

cous damping coefficient Ceq' Eq. (3.5b).

In practice, it may be difficult to measure the damping ratio by Eqs. (3 .39b,c) because the
static defl ect ion being very small must be determined for plotting the norm alized frequency­
response funct ion. Therefore it is customary to apply the bandwidth method, sometimes re­
ferred to as the half-power method, which utilizes frequency- response plots without normali za­
tion .

This techn ique requires very accurate measurement. Once the peak of the displacement re­

sponse amplitude 1 ~l max = 5max and the resonance frequ ency (0, have been located , the so

called half-power points can be determined. Since the energy dissipated per cycle is propor­

tionalto 52 , the energy dissipated will be reduced by 50% as for as the amplitude is reduced

by a factor of 1/.fi .Thu s, the half-power displacemen t ampl itude is defined

Sp =(1/2).fismax = 0,707 s max (3.39d )

pertaining to the upper and lower cut-off frequencies Wu' wL either side of Wr ' As for lightly

damped systems the (displacement) resonance frequency W, is very nearly equal to the natural

frequency Wo the frequency w,can be approximately replaced by wO'

For eva luating compliance test data it is also advantageous to use the polar plot in conn ec­
tion with the bandwidth method. For an experimental determination of Eq. (3.39c) the measured

magnitude and phase of the (driving-point) dynamic compliance ~i j (jw ) are plotted, that

means by tracing localized vectors represent ing graphically the response ratios of phasors

(complexors) ~ i / t, in the Nyqui st plane. A smooth curve can be drawn through the ends of

the radius vectors for an accurate locating of the half-power points by polar plotting. Use of the

bandwidth of the response locus involves accu rately determining the frequencies wu' Wv
sometimes called the half-power f requencies, for which

c W LU
tan ' =±! (3.3ge) .

k - mwt u
Those point s thus occ ur when the phase angle amounts to the particular values

. c W L,U
arc ~ii(J WL, U) = - If'L,U = -arctan 2

k - mw L,U (3.39f).

= -450 and - 1350



www.manaraa.com

(3.39g).

(3.200).

(3.20Ib).

(3.201a),
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Relating the interval between the upper and lower cut-offs, equivalent to the bandwidth 8.OJ,
to the frequency of maximum response approximated by OJo the damping ratio" and hence the

Q factor associated with any mode of vibration can be found

OJu -OJL = 8.OJ =2S=(2c/c
c)=.l

OJo OJo Q
The method is also effective when the damping is hysteretic because the locus as (() increases is
part of a circle [31].

Though being reserved to the interpretation of mobility test data an advantage of polar plots
worth to be mentioned permits that the data may be enhanced by circle-fi tting procedures. This
becomes important for extracting modal damping coefficients from the test data, see [18): Al­
ternative plotting methods.

Logarithmic Frequency Response Locus (Nichols plot)
A graphical representation of frequency response locus being alternative to the
polar plot is based on a plot in terms of parallel (Cartesian) coordinates by use of
logarithmic transformation.

With respect to the proved manual technique of system design in controls for
obtaining closed-loop response information from the open-loop data (Nichols
chart) this graphical interpretation is termed the Nichols plot (after Nathaniel B.
Nichols).

Starting from the polar form, Eqs. (3.79), (3.115), the frequency-response
function can be transformed into a complex logarithmic function written in the
natural logarithm of G(jOJ)

In G(jOJ) = In[IG(jOJ)le j
arcG(jro)]

= InIG(jOJ)1 + jarc Ct jz»)

The result permits to express the complex system parameter by its modulus and
argument in terms of a real and an imaginary part. The real part is equal with
the logarithmic amplitude (frequency- )response

In IG(jOJ)1 = In A(OJ)

often referred to as the logarithmic gain, and the imaginary part equals
the phase (frequency-) response, Eq . (3.80b)

arc G(jOJ) = -'1'( OJ)

Remark on Logarithmic Quantities and Unities. Basing on the previously treated frequency­
response normalization, Eqs. (3.l98c), (3.l99a), the logarithm of a non-dimensional displace­

ment response factor (magnification factor Rd or normalized amplitude ratio A2 / AI ), Eq.

(3.38b), can be interpreted as a response level of amplitudes LR of dimension one equal to

unity.

The neper, N p , being a special name for unity, is used as a unit for logarithmic quantities.

In practice , the non-coherent unit bel, B, based on common (Briggs') logarithms 19 (base 10),

preferably the sub-multiple decibel , dB, is widely used.
Generally

LR = In(A2 / A1)Np=2Ig(A2 / AI) B =20Ig(A2 / AI)dB

with I dB = [(In 10)/20] Np = 0,1151293 Np .
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Especially

I
G(jm)1 =201 IG(jm)1 dB
G(O) dB g G(O)

(3.202)

accordingly normalized by the static response factor G(O) as the proper reference magnitude

[49] .

Special Features of the Nichols Plot. Due to the simplicity of algebraic relations
the advantages of the transfer function representation turned out in 2.1.1 also hold
for a frequency-response function representation. In particular with regard to the
cascade or tandem connection being the most important of all interconnections of
components the overall frequency-response function is equal to the multiple prod­
uct of the individual frequency responses. Using logarithmic amplitude responses
the tedious vector multiplication of response complexors following polar plotting
can be replaced by gain addition for each component which is easy to carry out
graphically based on the relation:

[ [ [

In TI GA (jm) = L: In]GA(jm)1 + fL arc Gdjm) (3 .203) .
A=\ A=l A=\

- The resonance of amplitude being associated with the greatest (logarithmic)
gain is indicated by a horizontal tangent to the logarithmic frequency-response
locus.

- A change of (proportional) gain of the system coinciding with a change of the
static response factor G(O)merely shifts the locus parallel to the abscissa .

- The inverse of the locus, in this case, the dynamic stiffness K(jm) as the in­

verse of the dynamic compliance Qjm) , introduces a negative sign due to the

relations
ljlgRd = -lgRd arctanr-w) = -arctanV/ (3.204),

so that the curve shape remains invariant by inversion while the scales of coor­
dinate axes must be mirrored only.

Response Data Plotting. The logarithmic frequency-response loci (Nichols plots) of the nor­

malized dynamic compliance f k (j 1]) are shown in Fig. B.2 of the Appendix B.

The new coordinates being rectangular axes of magnitude and phase are differently scaled . The
ordinate of magnitudes is logarithmically scaled by both, absolute numbers and numbers gradu ­
ating the non-dimensional quantity in the special unit decibel, and the abscissa of phase angles

is uniformly scaled in the unit degree, thus, generating the complex Igf k (j 1]) -plane (Nichols

plane) as a semilogarithmic curve chart .

Respecting the rectangular representation (Nichols plot) of a set of normalized frequency re­
sponses the curves are adjusted by the logarithmic transformation

Cii(j~)
Ig - C

k

liJ O
= IglYk (j 1])1 + jarc Yk (j1]) -Ige

(3.205)

= -lgl~(1- 1]2)2 + (2s1])21_ j arctan 2S1] .M10
1-1]2
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into common logarithms with the modulus of Briggs' logarithmic system
M IO = Ige = 0,4343 which is ordinarily omitted from the imaginary part of Eq. (3.205) .

Henceforth the adjusted curve shapes are defined by the loci (hereat higher parabolic plane

curves) for selected damping ration values t; = const , and the frequency scales are outlined

as intersecting curves for selected frequency ratio values 17 = const . The shape signature is

portrayed by a locus starting horizontally from the amplitude ratio unity, Rd = I , respectively

from the pertinent amplitude level in the special unit decibel , LR = 0dB , versus

0° at 17 = 0, and terminating asymptotically versus the -1800 phase line at 17 = 00 .

The geometric locus of the greatest (logarithmic) gains being associated with the resonance

ofamplitude (dash-and-dot line) indicates the resonance frequency ratios 17r' whereas the ver-

tical intersecting line 17 = I coinciding with the _900 phase line is associated with the reso­

nance ofphase for all the damping amounts.

Logarithmic Frequency Plots (Bode plot)
A common alternative to the frequency response locus in the complex IgG(jw)-

plane (Nichols plane) results from the graphical representation of rectangular fre­
quency responses, i.e., by portraying the complex system parameter, Eq. (3.200),
separately by its component parts versus the logarithmic frequency . The pair of
real-valued frequency response curves is called the logarithmic frequency plots.

With respect to the development of design methods based on the open-loop
frequency response, in particular by illustrating performance criteria of stability
(phase and gain margins) for setting the parameters of controllers, this graphical
interpretation is termed the Bode plot (after Henryk W. Bode).

Special Features of the Bode Plot. The advantages of logarithmic transformation
already summarized with reference to the Nichols plot are largely preserved . This
proves true for several comparative properties such as the gain shifting property .
In case of a change of gain constant the total gain will be shifted parallel to the
ordinate by that amount:

Apart from being easier to construct the logarithmic frequency plots combine
additional advantages the most significant of which are worth being mentioned.
The range of forcing frequency on a logarithmically scaled axis of abscissas
(lgrs-abscissa) is much larger.
The graphical addition of contributions made by the various terms of a fac­
tored frequency-response function permits the plotting of composite curves
using specified types of product terms (building blocks) .

- The straight-line approximation reduces the frequency response plotting to a
polygon (or broken line) sketching owing to the straight-line slopes and break­
point (or corner) frequencies (angular) of the individual terms.

- More accurate plots can be sketched by tracing back to standard terms.

For a simplified straight-line approximation restricting the specified product terms
only to first order factors (P- T,-elements) with real roots the composite frequency
function in
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the factored f orm ofa time-constant representation
m

TI (1+ TD jz») .
• uel Il (1+ TD\Jw)",

G(JW) = KG o n = KG o (1 T.,' )(1 T., • ) •• •(1 T., • ) (3.206a)
TI(1+ Ts)w) + S\Jw + S2JW + s JW
v=1

describes in general the overall behaviour deduced from components most com­
monly used as building blocks.
The system parameters are given by
the static response factor (proportional gain): KGO = Kp ,

the rate times

the delay times, time constants

respectively by their reciprocals :
the breakpoint frequ encies, also termed wcf,Ov = 1/Toll

the corner (angular) frequencies Wcf,sv = 1/~v '

Expressed for logarithmic quantities using decibel units, Eq. (3.202), the rectan­
gular frequency responses result in

m n

IG(jw)ldB =20 19 KGO + 20 I 19l1 + Tolljwl- 20 I 19l1 + ~vjwl dB
1l=1 v=\

m n
arc G(jw) = arc KGO + I arc (1+ Tolljw)- I arc (1+ ~vjw)

1l=1 V=\

so that the composite logarithmic frequency plots (Bode plot) can be constructed
by summing up the contr ibutions of l st order factors . Both, the logarithmic gains
and the phase angles in the numerator are added to the gain of the constant factor,
while those in the denominator are subtracted. The gain constant KGO is simply a

horizontal straight line, whereas the 1st order gains are approximately represented
by the asymptotes of two limiting cases. Approaching very small or else very high
frequencies the component curves of each individual term (1+ jTw)±1 are ap-

proximated by a horizontal straight line broken upward or downward by a straight
line of unity slope ±l, equalling ±20 dB/decade. The intersection of each of the
low-frequency and the high-frequency asymptotes yields an appropriate break­
point (or corner) freque ncy to cf : The composite curve is approximated by

"blending" the component asymptote segments ranging from the pertinent break­
point frequency to one of the limiting frequencies.

The approximative gain curve together with the phase curve may provide in­
formation enough , at any rate it facilitates the sketching of exact composite
curves.

The composite frequency function without derivative action (absence of nu­
merator dynamics due to missing lead elements: TOil = 0)

(3.207a)
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(3.208a)

(3.207c).

(3.208b) ,
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describes in particular the behaviour of a passive mechanical second-order system
characterized by denominator factors (lag elements : ~v > 0, n = 2) dominat ing
with growing frequency.

The generic mechanical system the motion variable of which being expressed
by a displacement has a complex frequency characteristic G(jw) designated as

dynamic compliance Qjw) . This characteristic consists of a multiplying constant

and of two Ist-order storage elements as building blocks.
The system parameters already defined, Eqs. (3.12), (3.28a), (3.28b), (3.199a),

are
the compliance of the spring KGO = Kp = Ck = 1/k ,

and the delay times ~I , ~2 .

Those time constants, Eqs. (3.28a), (3.28b) , are real-valued only in case of
greater-than-critical damping , thus, implying that Eq. (3.24) holds true.

On account of Eq. (3.206b) the logarithmic dynamic compliance of the over­
damped system is represented by the composite logarithmic gain

IQjw)l
dB

=20 IgCk - 20I Igil+ ~vjwl =201gltl- 20I 19~r-I+-(-~-vw-)~2
v v (3.207b),

= const -I 0 19( I+ ~~w2) - 10 19(I+ ~~w2) dB

and the composite phase angle
arc Qjw) =arc Ck - arc (1+ ~dw)-arc (1+ ~2jW)

= 0- arctan( ~IW) - arctan( ~2W)

Accordingly the Bode plot of dynamic compliance can be constructed by sub­
tracting the gains from the compliance of the spring, and the phase angles from
zero, respectively.

In the critical damping case the delay times coincide with the time constant T
related to the natural period of oscillation To, Eq. (3.11), and the corner frequency

Wef equals the natural frequency wo, Eq. (3.6a). It follows

I 1
~I = ~2 = T= Wo wef =T = Wo

with the normalized time constant ,
I 1

' 51 = '52 < r = Two = I 1]ef = -:; = Two = I

and the cornerfrequency ratio 1]ef ' both of which are unity.

Response Data Plotting. The logarithmic frequency plots (Bode plots) of the normalized dy­

namic compliance l:k (j 1]) are shown in Fig. 8.3 of the Appendix B.

The new coordinates being rectangular axes of either magnitude versus frequency or phase
versus frequency are differently scaled. The ordinate of magnitudes is logarithmically scaled by
both, absolute numbers and those in the special unit decibel, whereas the ordinate of phase is
uniformly scaled by numbers in the units radian and degree. The abscissas of frequency are
logarithmically scaled for both curve plottings. The rectangular coordinates thus generate coor­
dinate frames for a pair of real-valued frequency plots at first as afull-logarithmic, at second as
a semilogarithmic curve chart [49).
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Respecting the rectangular representation (Bode plot) of a set of normalized frequency re­
sponses the pair ofadjusted curves is defined by the amplitude response (logarithmic gain) and

the phase response. both for selected damping ratio values S = canst and for a logarithmic

range offrequency ratio varying over two decades Ig('72 / '11) = Ig(10 / 0,I) = 2 .

The portrayed pair of logarithmic frequency plots shows clear resemblance to the frequency­
response curves in terms of ordinary rectangular coordinates. Those uniformly scaled plots are
proper for the common representation of frequency characteristics in vibrations known as the
amplitude- and phase-frequency ratio response s. Both are graphical interpretations of the al­
ready introduced (dynamic) magnification factor (non-dimensional displacement respon se fac­

tor) Rd , Eq. (3.38b). and of the phase difference (phase lag) '1/, Eq. (3.40b) . Uniformly scaled
frequency response plots are commonly used to determine vibratory specifications. So the in­
terval !'J.OJ between cut-off frequencies serves the ascertainment of damping ratio r; and Q
factor basing on the half-power points, Eqs. (3.39d), (3.39f) . The bandwidth !'J.OJ, already in­

troduced by use of the Nyquist plot, in addition gives evidence in transmitting properties (fil­
tering properties) of the system .

The determination of frequency-domain specifications takes advantage of logarithmically
scaled plots (Bode plot) . So the bandwidth !'J.OJ define s a single transmission band extending

from zero frequency up to a finite frequency , thus indicating a low-pass filter. The finite fre­
quency then will be specified by the half-power frequency occuring when the power consum of
the system reduces to one-half the maximum value at OJ = 0 . By relating the dynamic compli-

ance ~ii (j OJ) to the multiplying constant "compliance of the spring " Ck , Eq. (3.199a), the

system frequency characteristic is adjusted in variable and scale, hence the logarithmic fre­
quency response in new coordinates starts from the normalized dynamic compliance

r k (j 17) of the overdamped system

C ( . ...'£..-)
-ii J "'0 ' I

C = Yk (J17) = (I . )(1 ' )
k - + Jisl17 + JTs217

normalized (logarithmic) gain of dynamic compliance

(3.209a)

(3.209c)IYk(j17u)1 = 20 19 1+ 20 Ig 0,707 dB
- dB

IYdj 17)1 = 20 19 1- 20± ~I + (T.v'l)2
- dB v (3.209b).

=0 - 10 19( I + T.~ 17
2

) - 10 19(I + T.~ 17
2

) dB

An amplitude response dropping to 0,707 being equivalent to the logarithmic gain dropping of
3 dB below the "peak value" of unity or 0 dB at T/ =0 according to

IYk (j 17 u )l _ .
YdO) - 0,707 ,

= 0 dB - 3,01 dB = -3 dB

(3.21Oa).

shows that the pass-band !'J.17 is thus defined by the

upper cut-offfrequency ratio !'J. 17

!'J.OJ 0- = !'J.17 = 17u - = 17u
OJo

Within this single pass-band !'J. 17 the attenuation to oscillations is relatively small (-3dB),

whereas the attenuation to oscillations of frequencies beyond the upper cut-off frequency is
relatively large .
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This holds true for magnitude plots without an increase at resonance (r;> (l/2)..{i ),

even for those with sufficiently small increase in magnitude ( r; > 0,5 ).

Regarding the underdamped case the time-constant representation basing on Ist order fac­
tors, Eq. (3.207a), is no more suited. Therefore, the frequency function of the system will be
represented only by a 2nd-order term (P-T,-element) implying complex roots

C ("-.!'!...-)
-ii J "'0 _ y,' = 1

C - k(J1]) 1 '21' 2
k +J~1]-1]

normalized (logarithmic) gain of dynamic compliance

Irk (j1])ldB = -20 Ig~(1_1]2)2 + (2r;1]) 2
= -10 19[(1-1]2r+ (2r;1]) 2

] dB (3 .211b).

For magnitude plots with sharp resonant amounts (r;«1) the bandwidth Ll1], defines by use of

3 dB magnitude drop a single transmission band extending from a lower cut-off frequency
greater than zero to a finite upper cut-off frequency, thus indicating a band-pass filter . The

pass-band centre frequency coincides with the (displacement) resonance frequency liJ r being

approximated by the natural frequency io 0

Ilk (j 1]L,U )ldB = 20 19 12~1 + 20 190,707 dB

= -20 19 12r;\ dB - 3 dB

(3 .21 Ie).

(3.213a)

(3.212a).

The pass-band is thus defined by the interval between the upper and the lower cut-offs

Ll1]= 1]u -1]L (3.21Ob).

Since the pass-band width is relatively narrow, the frequency selectivity at resonance is a sharp
one, the oscillatory system has the property of a narrow-band filter with a relatively large at­
tenuation to oscillations at frequencies out of both of the cut-off frequencies.

Using the Bode plot a further understanding of system's behaviour in the regions of small
and large frequency ratios can easily be visualized by straight-line approximation, see Fig. B.4
of the Appendix B.

Following Eq. (3.207b) and specifying the 2nd-order system as critically damped the two
lst-order factors of the denominator are identical , thus the only one system parameter given by
the normalized time constant and its reciprocal is reduces to unity, Eq. (3.208b). The composite

logarithmic gain and phase angle of the normalized dynamic compliance rk (j 1]) are then

Irk (j 1])ldB = -20 19(1 + r
2

1]2 ) =-20 19(1 + 1]2) dB

arc rk (j 1]) = -2 arctan( r1]) = -2 arctan 1]

Considering the limiting cases it follows a low-frequency asymptote

Ilk (j1])ldB ::::: -20 19i = 0 dB for 1]« 1

being horizontal, and a high-frequency asymptote

Irdj1])!dB ::::: -20 Ig1]2 = -40 Ig1]dB for 1]» 1 (3 .213b)

having a slope of -40 dBIdecade . It indicates that the high-frequency slope of a 2nd-order

system is steeper than that of a l st-order system (-20 dBIdecade) .

The high-frequency and low-frequency asymptotes intersect at the corner frequency ratio

1]cf = (ljr) = 1. The component asymptote segments determined by Eqs. (3.213a,b) are
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identical with the logarithmic gains of storage element compliances ICk I ' ICmI.Relating them

to the multiplying constant "compliance of the spring" Ck ' Eq. (3.199a), the element frequency

characteristics are adjusted in variable and scale to the

normalized compliance of the spring Ykk (magnitude)

normalized compliance of the mass Ykm (magnitude)

IYkml = ICm1/Ck = 1-1/ (mm
2 )1/( 1/k) = k/(mm

2
) = 1/TJ2

(3 .214a),

(3 .214b)

leading to the
normalized (logarithmic) gains ofstorage compliances

IYkkl dB =OdB IYkmi dB =-401gITJldB (3.215a) .

As a result of Eqs. (3.213a,b), (3.215a) it is obvious that the composite frequency behaviour of

the structure is sufficiently interpreted by the compliance of the spring IYkk I in the region of

small frequencies , or else by the compliance of the mass IYkmIcorresponding to large frequen­

cies . Accordingly the element behaviour is illustrated by its frequency effect on the magnitude
plot (covered frequency band) . So the compliance of the mass causes the dynamic compliance

curve of the composite structure to break down at the corner frequency ratio TJef ' thus indicat­

ing the system's filtering property of a low-pass filter.
Regarding the underdamped case the straight-line sketching ceases to be suitable for an ac­

curate construction of the Bode plot. Indeed, for lightly damped systems the exact curves devi ­
ate substantially from the asymptotes in the vicinity of the corner frequency . The correction to
the asymptotic approximation at the corner frequency being available in tabular form for dis­
tinct amounts of damping can be used to detail the region of resonance surrounding the corner

frequency . The detail is marked in the magnitude plot of Fig. B.4 specified for t; = 0,2 .

The correction amount can be evaluated by the difference of the logarithmic gain of dissi­

pator element compliance ICc I (pointed tangent) at the corner frequency ra-

tio'lef = (l/r) = 1 to the low-frequency asymptote, Eq. (3.2IOa). Defining with respect to

Eqs. (3.214a,b) the

normalized compliance of the damper Yke (magnitude)

IYkel = ICc1/Ck = 1- j /(cm )1/( 1/k) = k/(cm) = l/(2t;TJ)
normalized(logarithmic) gain ofdissipator compliance

19 IYke IdB = -20 19 12t;TJI dB

the correction gain for t; = 0,2 follows from Eq. (3.210a)

0+ (-20 IgO,4) = -20 IgO,4 = 7,96 dB.

(3.214c),

(3 .215b)

(3.215c)

Though it is more accurate to extend the composite frequency function, Eq. (3.206a), by
2nd-order standard terms with complex roots there is no advantage with reference to straight­
line approximation . The logarithmic gains being convergent at the limiting frequencies for all
damping amounts are approximated by the same asymptotes. It is irrelevant to the goodness of
approximation to deduce the asymptotes either from a quadratic or from linear denominator
factors representing only the overdamped (or critically damped) system. Nevertheless, the con­
struction of the exact composite curve requires the contribution of a 2nd-order standard term
(building block), Eqs. (3.211a ,b), for portraying the resonance phenomenon of the underdam­
ped system.



www.manaraa.com

(3.216).

192 3 System Representation by Equations

Since the significant response is given by the resultant force to an exciting motion
it proves convenient to represent graphically the reciprocal of the (direct) fre-

quency-response function Gii1(jwf) defining the (direct) dynamic stiffness of a

structure K~I(jWf)' Eq. (3.188b). Accordingly the reciprocal of the static re­

sponse factor G-1(0) is identical with

the stiffness ofthe spring
K k =ljCk =k (3.199b) .

If the inverse complex system parameter Giil (jwrI wo) varying with the new

variable '7 will be related to the multiplying constant G-1(0) the transformation in

variable and scale results in a normalized response ratio of phasors (at the same
point i), which being already defined by Eqs . (3.188b), (3.198c) is designated
the normalized (direct) dynamic stiffness of a structure X k (j '71)

Kii(j:f) lilt i
-K 0 = AI k= A

k
1

=1jYk(j'7I)=Xdj'71)=I+j2('7I-'7f
k si si - -

- -
The adjusted (data-reduced) polar plot of X k (j '7) , Eq. (3.216), representing the

inverse frequency response of I k (j '7), Eq. (3.198c), which is graphically inter­

preted in detail and drawn in Fig. B.1 of the Appendix B, also can be plotted in
terms of polar coordinates (Nyquist plot) as the frequency ratio '7 varies from 0 to
00 .

Response Data Plotting. The polar frequency-response loci (Nyquist plots) of normalized dy­
namic stiffness X k (j '7) are shown in Fig. B.5 of the Appendix B.

The effect of the system parameter damping ratio (on the inverse frequency-response

characteristic (direct dynamic stiffness Kii(jzu) ) is represented graphically in the normalized

form X k (j '7) by a set (or family) of polar plots for various amounts of damping . The damp­

ing effect is indicated by the change in dynamic stiffness of a structure, i.e., by the change in
force amplitude and phase related to the constant-amplitude displacement.

The adjusted curve shapes are defined by the loci (hereat Runge parabolas) for selectee:

damping ratio values (= const , and the frequency scales are outlined as intersecting vertical

straight lines for selected frequency ratio values '7 = const . The shape signature is portrayed

by a locus starting perpendicularly to the real axis from unity (normalized static response) at
'7 = 0, and terminating in fanwise spreading curves at '7 = 00 . The degree n of the denomi­

nator being smaller than m of the numerator, hereat m - n = 2 , related to the present function

X k (j '7) a fast dynamic behaviour dominates caused by the derivative action of a second­

order factor as numerator (numerator dynamics). Hence, large magnitude response ratios of
dynamic stiffness respecting major resonant vibrations indicate the high-pass filtering property.

Resonance of amplitude is associated with the radius vector's shortest length coinciding
with a rectangular angle of vector and tangent to the polar plot at point of tangency . The geo­
metric locus of the minima of magnitudes (smallest displacement response factors) according to

the smallest stiffness values for various amounts of damping (dash-and-dot line forming a
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semiellipse) indicates the resonance frequency ratio 1]r ' Eq. (3.39a). The frequency ra­

tio 1]0 = I pertaining to the resonance ofphase is associated with the geometric locus of rec­

tangular arguments (phase leads in quadrature) that coincides with the (positive) imaginary
axis.

In particular with regard to the cascade or tandem connection and the advan­
tage of carrying out graphically with ease the vector multiplication of response
complexors the logarithmic transformation will be applied likewise to the inverse

complex system parameter Giil (jmrlmo) related to the multiplying constant

G-1(0) .

Response Data Plotting. The logarithmic frequency-response loci (Nichols plots) of normal ­

ized dynamic stiffness X k (j 1]) are shown in Fig. B.6 of the Appendix B.

One of the special features of the Nichols plot is that the curve shape remains invariant by
inversion so that the dynamic stiffness loci, Fig. B.6, are mirror images of the dynamic compli­
ance loci, Fig. B.2, being reflected in the unity- or OdB-line coincident to the axis ofsymmetry.

The logarithmic frequency plots (bode plots) of normalized dynamic stiffness X k (j 1]) are

shown in Fig. B.7 of the Appendix B.
Considering that the advantages of logarithmic transformation are preserved by tracing the

component parts separately versus the logarithmic frequency the magnitude and phase plots of
dynamic stiffness, Fig. B.7, are also mirror inversions of dynamic compliance curves, Fig. B.3,
by reflecting both in the unity- or OdB-line and in the 00or Orad-line, respectively .

System's behaviour in the regions of small and large frequency ratios can be visualized by
straight-line approximation, see Fig. B.8 of the Appendix B.

It is easy to show, that the composite logarithmic gain and phase angle of the normalized

dynamic stiffness X k (j 1])

IX k (j 1])!dB = 20 Ig(1+ 1'21]2) = 20 Ig (1+ 1]2) dB

arc ~k (j 1]) = 2 arctan (1'1]) = 2 arctan 1] (3.212b)

are the mirrored normalized dynamic compliance curves, Eq. (3.212a). Thus , the slopes of the
high-frequency asymptotes do not differ in steepness but only in sign with reference to Eqs.
(3.213a,b), and the high-frequency and low-frequency asymptotes intersect at the same corner

frequency ratio 1]ef = (1/ 1') = I . The component asymptote segments determined by the

inverse (positive-valued) Eqs. (3.213a,b) are identical with the logarithmic gains of storage

element stiffnesses IKkI, IKmI.Relating them, and equally the dissipator element stiffness

IKeI' to the multiplying constant "stiffness of the spring" Kk , Eq. (3.199b), the element fre­

quency characteristics are the

normalized stiffness of the spring X kk (magnitude)

IXkkl = IKkl/Kk= kJk = I

normalized stiffness of the mass X km (magnitude)

IXkml = IKml/Kk = l-m m 21/k = (mm
2 )/ k = 1]2

normalized stiffness of the damper X ke (magnitude)

(3.216a),

(3.216b),

(3.216c)
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leading to the normalized (logarithmic) gains ofstore stiffnesses

IXkkl dB =OdB IXlanidB =40Igl1JldB

and ofdissipator stiffness, respectively

IXkcldB =20IgI2~1JldB

(3.2l7a),

(3.217b).

As a result of Eqs. (3.2l6a,b), (3.2l7a) it is obvious that the composite frequency behaviour

of the structure is sufficiently interpreted by the stiffness of the spring IXkk I in the region of

small frequencies, or else by the stiffness of the mass IXIanI corresponding to large frequen­
cies. Accordingly the element behaviour is illustrated by its frequency effect on the magnitude
plot (covered frequency band). So the stiffness of the mass causes the dynamic stiffness curve

of the composite structure to break upward at the corner frequency ratio 1J cf thus indicating
the system's filtering property of a high-pass filter.

The correction gain, already determined for ~ = 0,2 following Eq. (3.21Oa), is a deviation

of the same value but of negative sign (of opposite direction) .

3.3
Comparison of the Fourier and the Laplace Transform
Methods (References to Applications)

Integral transforms being well suited to the analysis of model systems the behav­
iour of which is governed by linear differential equations are applied to a variety
of engineering problems. Compared to the classical method treated in 3.1 integral
transform methods are a mathematical technique that now as before is appropriate
to solve and explain engineering problems in like manner, 3.2.

The Laplace transform widely considered as resulting from a broader and more
basic method apparently has displaced the Fourier integral as the main tool of
analysis . One reason seems to be the belief that the Laplace transform can handle
a more general class of functions. But this is only apparent provided that the ex­
tension of integral transform theorems to generalized functions (distributions)
comes into use in view of engineering problems, [36]. Above all, modern fre­
quency concepts in vibration data analysis, shortly denoted spectral analysis, have
brought anew Fourier transforms into focus though being obtained from digital
data. Spectral analysis implies the data reduction of time histories to the frequency
domain representing transient (shock) functions just as random functions , [42],
[43], [111] .

3.3.1
Fourier Transform Method. Advantages and Disadvantages

The Fourier transform is an essential tool of analysis of linear time-invariant sys­
tems implying features suited to particular problems in vibrations as follows.

Advantages
On condition that the Fourier transform of a function exists this integral repre­
sentation is more illustrative in the sense that the transform is a function of the
real frequency OJ instead of the complex frequency s (or p). For purposes of
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physical interpretation of actual measured data, the Fourier spectrum repre­
sentation (continuous spectrum) has a greater intuitive appeal with respect to
the frequency content of non-periodic signals (spectral density functions),
3.2.2.

- The Fourier transformation being primarily adapted for time-limited signals
hence appears to be fitted to non-periodic vibrations caused by forcing func­
tions suddenly applied and then removed (transient excitations of pulse-type
such as shock pulses), 3.2.2. This integral representation can be visualized as a
logical extension (passing to limit) ofappro ved Fourier techniques fitted to pe­
riodic (multi-sinusoidal) signals (pulse-train excitations such as shock pul­
satings) and their representation by the Fourier spectrum (line spectrum), 3.2.1.
The Fourier transform is extensively used in connection with statistical meth­
ods for analysing vibrating systems . The integral transform representation ap­
pears as the spectral decomposition of a stationary (or slowly time-varying)
random process specified by the transform of the autocorrelation function
(power spectral density) , 3.2.5.
The frequency-domain analysis uses for the experimental determination of
system parameters or mode shapes data-processing methods basing on the dis­
crete Fourier transform (DFT) which is an estimate of the continuous Fourier
transform (applied to mobility, respectively dynamic compliance measure­
ments).

Disadvantages
The class of time functions being Fourier-transformable is restricted thus cov­
ering only a part of time-varying functions occuring in practice , and so the
steady (or continuously time-varying) sinusoidal signals (simple harmonic ex­
citations) are excluded .
This difficulty can be overcome basing on mathematically rigorous derivations
by extending the transformation theorems to a suited class of distributions,
(tempered distribution s), 3.2.2.
Another method of overcoming takes advantage of frequency-domain repre­
sentations for the steady-state analysis of systems. The phasor representation
of sinusoids is turned to account profiting by the striking simularity between
the frequency-response function and the complex response ratio of phasors
(complexor),3 .1.3.
The evaluation of the inversion integral being a real integral for which the in­
terval of integration is not finite (improper integral) turns out to be compli­
cated .
Performing the inversion formula approach this difficulty will be by-passed by
extending the real w-domain to the complex s- (or p-) plane (analytic continua­
tion) and applying the method of residues, 3.2.4.
Initial or boundary conditions at the origin must be particularly brought in
either by use of the finite Fourier integral (one-sided transformation), or more
generally with regard to the ordinary Fourier integral by applying some arti­
fices in derivation (Cauchy 's initial-value problem) .
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3.3.2
Laplace Transform Method. Advantages and Disadvantages

The Laplace transform is an essential tool of analysis of linear time-invariant sys­
tems appearing suited to more general cases of transient excitations in vibrations .
Respecting control system analysis the transient behaviour frequently is of more
interest than the steady-state behaviour. For that reason the Laplace transform
tends to replace other forms of differential equation representation owing to the
particular features as follows.

Advantages
- The restrictions of convergence are more temperate being due to the "conver­

gence" factor in the Laplace kernel so that the class of Laplace-transformable
functions covers practically all functions ofpossible interest in engineering ap­
plications, so the steady sinusoidal signals restricted to varying values of time
which are positive (causal functions), 3.2.7.

- The Laplace transform being a complex analytic function of s (or p) enables to
evaluate the inversion integral from the first on the background of complex
analysis (theorems for complex integration) . Thus, a preceding step in extend­
ing the real m-domain to the complex s- (or p-) plane (analytic continuation)
can be saved, and the inversion formula approach is preferably performed by
combining the partial fraction expansion with the method of residues . In this
way the last step of response calculation is taken with ease by using elementary
transform pairs listened in available transform tables, 3.2.9.
The Laplace transformation primarily adapted for time-unlimited signals
though being bounded to positive values of time is an approved solution tech­
nique fitted to non-periodic vibrations caused by forcing functions suddenly
applied (transient excitations of step-type such as a harmonic shock excitation),
3.2.8. The dynamic behaviour thus can be analysed by a source suddenly
turned on and remaining stationary thereafter . Starting-up or turn-on opera­
tions generate in a simple way dynamic (starting) load conditions the responses
to which are significant for structure design just as for system design.
Initial or boundary conditions are automatically incorporated in the trans­
formed solution for any arbitrary excitation. The complete response thus being
gained at the first attempt is represented by a superposition of the system re­
sponse to both the excitation (zero-state response) and the non-zero initial con­
ditions (zero-driving response) , 3.2.8.

Disadvantages
The integral representation of functions in the Laplace- (s- or p-) domain is
complicated respecting graphical interpretation for engineering applications,
3.2.10, because the transform is a complex analytic function (conformal map­
ping).
For purposes of physical interpretation namely of the s- (or p-) domain re­
sponse characteristic this difficulty may be overcome by substituting
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s (or p) = j to , thus profiting by the close relation of the transfer function to the

frequency-response function (boundary function on the imaginary axis), 3.2.8 ,
with regard to the well acquainted frequency-response analysis, 3.2.3.

- Time functions varying in negative values of time (non-causal functions) can­
not be uniquely represented as an inverse L-transform. That is due to the defi­
nition range of time functions for this integral representation (one-sided trans­
formation).
The difficulty of cutting off signals for times prior to zero may be by-passed by
introducing some artifice to simulate or approximate effects prior to zero. To
handle this situation some authors use the bilateral Laplace transform (two­
sided transformation) existing only in a vertical strip of the s- (or p-) domain,
[36], [45], and not in a right-half plane of convergence, 3.2.7.

- Following the one-sided definition range of original (or time) functions the
Laplace transform method is unsuitable for purposes of data processing in ran­
dom vibrations, 3.2.6.

To summarize, that form of transformation should be used which conveniently
handles the class of functions concerned (types of excitation and motion as well as
model systems being of interest in vibrations) and simplifies the response calcula­
tion, whether the transformation is Fourier , Laplace, or even a more general type
of advanced transform methods (Fourier-Bessel, Mellin, Hankel, z transform)
which are treated by more specialized references, see [36] to [45].
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4 Transform Analysis Methods of Vibratory
Systems (Frequency-response Characteristics)

The representation of mechanical systems by integral transform methods basing
on Fourier techniques just as on the Laplace transform enables to perform fre­
quency concepts suited to linear model systems.

As an approved method in vibration data processing the frequency-response
analysis of configurations of mechanical objects (elastic systems) wil1 be treated
more in detail. To define the dynamic characteristic of a structure the frequency­
response function will be interpreted by both the phasor method (response phasor
ratios) and the Fourier transform method (response transform quotients) . Thus,
covering steady-state analysis as wel1 as spectral analysis with reference to tran­
sient and random vibrations , the frequency concept will be specified by fre­
quency-response (or dynamic) characteristics appropriate to structural configu­
rations. According to its graphical interpretation by response data plotting which
includes phasor diagram representation and frequency response plots, respec­
tively, the complex system parameter is defined by the (mechanical) mobility be­
ing wide-spread in vibration data analysis (mobility measurements), [18], in addi­
tion by the dynamic compliance (or receptance) being complementary to mobility
and convenient for complex structures in machinery .

As an introductory section acts the reference to the model representation
through a mathematical system expressed in different formulations. There a
pointed out in summary the formulations of differential equation s commonly used
in vibrations in conjunction with diagram representations , regarding in particular
the mechanical network . Fundamental relationships between network variables
(interconnective relationships or mechanical circuit theorems) are presented for a
direct derivation of overal1 dynamic compliances by viewing translational me­
chanical networks (circuits).

4.1
Formulation of Dynamic Equations (Equations of Motion)

The derivation of system equations basing on direct representation of lumped dy­
namic systems by use of mechanical model networks has been introduced in 2.3.4.
However, a more general but concise survey of different formulations of dynamic
equations now implying integral transforms (transform models) will be given in
the fol1owing. Defined sets of relationships between abstract mathematical objects
can be obtained by two principal classifications of mathematical systems. They
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are devided into synthetical and analytical dynamics (or methods) in vibrations,
[53].

The first classification , also termed the direct procedure, [54], is a most con­
venient one for engineering. Subdividing systems into components (or elements)
the dynamic equations are derived from element relations by formulating inter­
connection requirements. Furthermore, the elasticity involved in interactions be­
tween elements can be inserted into vibratory systems by several facilities . Fi­
nally, the visual inspection of network diagrams enables to bypass the difficulty of
solving differential equations. The overall dynamic behaviour thus will be deter­
mined by use of transform models and their inherent topological connections be­
tween network elements .

4.1.1
Analytical Dynamics. Mathematical System by Analytical Methods

Newtonian Mechanics (vectorial mechanics)
The relationships between translational mechanical system variables specifying
changes in the two distinct types of state, the kinetic and the static translational
state, are identified and described by laws enunciated by Newton (Newton's sec­
ond law, conservation of momentum and work). For the description of lumped
parameter models the interaction of a finite number of isolated abstract objects
will be identified by extending the fundamental laws of objects (element laws) to
the mechanical model system (composite system of rigid bodies or simply of par­
ticles) .

Basic Tool. Newtonian mechanics implies the application of free-body diagrams
for each of the interacting passive elements being of the type "mass". Kinematical
constraints cause internal forces being included as external forces in the free-body
diagram. Physical coordinates and forces are used which are in general vector
quantities . By reason of that Newtonian mechanics are also referred to as vectorial
mechanics .

D'Alembert's Principle (dynamic equilibrium)
The principle of virtual work concerned with the static equilibrium of a system
can be extended to dynamic systems. If there are some unbalanced forces acting
upon a particle then according to Newton's second law the force resulting vector
must be equal to the rate of change of the linear momentum vector.

Basic Tool. The case of static equilibrium is extended to the case occuring by a
resultant force that is in equilibrium with the inertia force, thus describing the case
of dynamic equilibrium . As a result of variational principle being fashioned from
static into dynamic equilibrium the equations of motion can be derived without
considering explicitly the interacting forces. D' Alembert's principle though giving
a complete formulation of the problems of mechanics is still basically a vectorial
approach. Accordingly this method remains closely related to Newtonian me­
chanics.
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Lagrangian Mechanics (analytical mechanics)
This variational approach commonly referred to as analytical mechanics describes
the motion in terms of more abstract generalized coordinates. The equations of
motion are derived by means of scalar functions , namely, the kinetic and potential
energy, and an infinitesimal expression known as the virtual work in the case of
nonconservative systems. The equations of motion can be derived without the
need of free-body diagrams.

Basic Tool. Lagrangian mechanics operates on the formulation of a set of general
differential equations known as Lagrange's equations of motion. The kinetic en­
ergy and the potential energy can be expressed in terms of generalized displace­
ments and velocities, respectively, and the virtual work is taken into account by
generalized virtual displacements and forces, accordingly. It is remarkable that not
alI of the scalar quantities necessarily represent physical quantities. The advan­
tages of Lagrange's equations become more and more evident as the number of
degrees of freedom of the system increases.

Hamilton's Principle . A different formulation, based on d' Alembert's principle
considers the total motion of the composite system between two instants. This
leads to an integral principle stated by Hamilton that reduces problems of dy­
namics to the investigation of a scalar integral. Tracing the actual path (true path)
in the configuration space the value of the integral will be rendered stationary be­
ing actually a minimum. This condition leads to the equations of motion also for
non-conservative systems obtaining dissipator elements (dampers) with apprecia­
ble more ease than the Newtonian approach.

The Lagrangian formulation shares with d' Alembert's principle the advantage
of not having to deal with constraint forces, but the advantages go beyond that.
One remarkable advantage is that alI the equations of motion can be derived from
scalar quantities. By this it proves that the formulation is invariant with respect to
the applied coordinate system. Moreover, the integral representation requires ve­
locities only instead of accelerations. Nevertheless, the extended Hamilton's prin­
ciple used for the Lagrangian approach is a formulation and not a solution of the
problems of dynamics. It belongs to a broader class of principles, called principles
of least action, [30], [40], [41], [54], [55], [56].

4.1.2
Synthetical Dynamics. Mathematical System by Synthetical Methods

Method of Influence Coefficients
In more complex mechanical systems (structures) it is of interest to express the
relation between the translational displacement (deflection) at a point and unit
forces (loads) acting at various points of the system attributed to the property of
materials, termed elasticity. Thus, the static translational state of a given object
configuration (elastic system) will be specified by its flexibility characteristic.

Basic Tool. The mechanical system variables (loads and deflections) are related
by the flexibility influence coefficients being adopted extensively in structural en-
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gineering. For linear structures the superposition principle holds true and the total
deflection at a point is obtained by summing up the contributions of all forces.
Conversely, the total force at a point due to unit displacements at various points is
given by defining the stiffness influence coefficients and summing up the contri­
butions of all displacements . The various influence coefficients are to be consid­
ered as elements of the flexibility matrix or of its inverse, respectively, called the
stiffness matrix .

In vibrations also a kinetic translational state must be specified being a type of
state supplementary to the static one, and attributed to the property of matter,
termed inertia . This is done by replacing the static loads by inertia loads. Such
relations between the mechanical variables (forces and accelerations) are justified
on account of the modelling condition of linearity. Oscillating in a normal mode
all coordinates of the model system oscillate with the same frequency, and main­
tain fixed ratios with the other coordinates . Accordingly all inertia forces hold up
fixed ratios with the other inertia forces. The result is a set of equations of motion
in terms of influence coefficients where the force each particle (body) applies is
expressed by the product of its mass and acceleration.

The force thus is defined in terms of changes in translational mechanical state
which includes both the static and the kinetic type, 1.2.1. Accordingly the force­
motion performance equations can be developed in matrix notation by replacing
the matrix of influence coefficients by the inverse of the system matrix and by
substituting a frequency modulus . Moreover, the inverse system matrix is defined
as the product of multiplying the flexibility matrix and the mass matrix already
introduced in 2.3.4, [30], [34], [41], [56].

Matrix Methods for Lumped Parameter Systems. The matrix formulation being
a convenient way to handle simultaneous equations of motions is a particularly
important method of vibration data analysis for multi-degree-of-freedom systems.
The algebra of matrices forms the basis of many computer simulations to vibra­
tion problems . One of the most useful numerical methods of finding the charac­
teristic values and mode shapes for a vibration system is the method of matrix it­
eration. This technique relies on the behaviour properties of a square matrix to
converge on the characteristic vector through successive multiplications of the
matrix by itsself. Knowing the characteristic vector (or mode shape) also deter­
mines the characteristic values, [56], [57].

Transfer Matrices (finite element method)
Matrix iteration using the behavioural properties of square matrices is an excellent
technique for solving the characteristic value problem. However, complex systems
require a large number of generalized coordinates to describe the total motion, so
this method can be slow and cumbersome. In addition, entered errors are cumula­
tive, and the total error can become quite large after successive iterations As an
alternate, a finite number of elements may be used to reduce the size of matrices
to the number of variables which are necessary to describe completely the motion
of the system. This technique approximating the characteristic variables of the



www.manaraa.com

202 4 Transform Analysis Methods of Vibrating Systems

system piecewise over the elements is called the finite element method. It proceeds
from one station of the discretized model to the other one in matrix notation by
virtue of the transfer matrix.

Basic Tool. A large system is broken down into subsystems with simple elastic
and dynamic properties. The formulation is in terms of the state vector which is a
column matrix of the state variables representing physical variables such as inter­
nal force and displacement or velocity. The elements transfer the value of the state
variables from one point to the next one. These points connecting the elements are
called nodes not to misinterpret as zero vibration points . The dynamic properties
caused by the mass of a subsystem are contained in the point matrix, whereas the
elastic properties concentrated on the spring are described by the field matrix.
Combining both elements to a section the state vector at one station is transferred
to the following station by a square matrix , called the transfer matrix for the sec­
tion. In terms of these state variables, previously numerical calculations are made
to proceed from one end of complex systems to the other, the natural frequencies
being established by satisfying the appropriate boundary conditions. For a com­
plex system structure the transfer matrix can be obtained by repeatedly multiply­
ing the transfer matrices for all the sections being successively connected, [57],
[58], [59].

The similarity in transfer matrix procedure to the two-port diagram represen­
tation (the extension of which to multiports included) thus becomes obvious re­
garding the transfer matrix of the overall signal 4-pole as the result of a cascade
connection, see 2.2.7, Eq. (2.65) .

Mechanical Network Analysis (mechanical circuitry)
Concepts from linear system theory having to deal with the study of stability char­
acteristics as with the derivation of frequency response relations (ardomain mod­
els) prefer the approved network or circuit representation originating from electri ­
cal circuitry .

The fundamental principle on which network analysis is based is that of con­
servation ofenergy. For network analysis purposes this is expressed as:
- net power summed over all the network elements vanishes, see 2.5.3,

Eq. (2.91) .

For each element of the network the power may be conceptually determined by a
simultaneous measurement of a pair of rate variables (intensity or power vari­
ables) . To describe the interconnection pattern of a network in terms of mathe­
matical relations (network equations) general orientation conventions are intro­
duced into the related diagram representation (network diagram), 2.3.1. Allocating
an arrow direction with respect to the "through-propagating" nature of one ele­
ment power variable (force transducer) and a plus or minus sign respecting the
"across-acting" nature of the other element power variable (velocity transducer), a
polarity to both measuring instruments and thus an algebraic sign to the element
power is allocated. Positive directions of the through power variable (P-variable
rate) and the across power variable (T-variable rate), or rather in preferably used
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tenns the flow and the effort variable, where both of them are positively direc ted,
indicate a power being absorbed in a network element. The pair of power vari­
ables may thus be equivalently represented by a single oriented linear segment.
Adopting the same polarity convention for every power-variable pair the consis­
tently oriented set of completely connected segments for a network results in an
oriented linear graph (directed graph or digraph), in controls termed a signal fl ow
graph, 2.3.5, see Fig. 2.27.

The representation of power-variable measuremen t pairs positively oriented by
an associated convention in diagram representation leads to interconnective rela­
tionships between power variables. Considering coherent sets of interconnection
as the fundamental laws of genera l network analysis those relationships are inde­
pendent on whether a mechanical, a fluid or an electrical system is represented,
illustrated by the followi ng pairs ofpostulates (interconnection requirements).

Incidence (or vertex) relationship for flow variables (through power variables):
- For translational mechanical networks, the algebraic sum of all fo rces, includ ­

ing inertia forces, incident at a point of connection (node or mechanical vertex)
is identically zero (d' Alembert ' s principle).
For rotational mechanica l netwo rks, the same interconnection relation holds
true respecting all torques.
For fl uid networks, e.g., for a hydraulic piping actin in an incom pressible fluid,
the algebraic sum of all volume flow rates at a connection point (junction) is
identically zero (principle of the continuity of flow rates).
For electrica l networks, the algebraic sum of the currents incident at any junc­
tion point (node or electrical vertex) is identically zero. This vertex postulate is
known as Kirchhoff's current law (conveniently abbreviated to KCL).

Boundary (or circuit) relationship for effort variables (across power variables):
- For translational mechanical networks, the algebraic sum of the relative ve­

locities between component terminals (junction points) is identically zero when
taken around any closed boundary of the network (loop or mechanical circuit).
For rotationa l mechanica l netwo rks, the same interconnective relation is valid
concerning the relative angular velocities.
For fluid networks, the algebraic sum of the pressure diffe rences taken around
any closed path (fluidal circuit) is identically zero.
For electrical networks, the algebraic sum of the voltages, across the element
terminal pairs is identically zero when taken around any closed boundary of the
network (loop or electrical circuit). This circuit postulate is known as
Kirchhoff's voltage law (conveniently abbreviated to KVL).

The two sets of interconnective constraints on power variables may thus be re­
garded as a natural genera lization of Kirchhoff's laws originating in electrica l
network analysis. The pairs of postulates defining the spatial or interconnective
relationships, and being appropriately called the through-measurement principle
and the across- measurement principle, are necessary and sufficient for the con­
servation of energy in the network model.
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Remark on Mechanical Duality. It should be noticed that mechanical network analysis exceeds
the simple approach for the derivation of equations of motion basing on dynamic equilibrium
statement . It is obvious that, e.g., for translational mechanical systems the summing of oriented
forces at a common junction (node) is equivalent to summing forces acting on a rigid body (or
particle), thus being coincident to d 'Alembert's principle . Though saving free-body diagrams by
use of this principle the constraints are reduced to the interconnective relations between forces
only. As already noted by H. M. Trent, [14], in mechanics the fact had been apparently over­
looked that the oriented sum of pertinent motions in terms of velocities, as well as of displace­
ments, vanishes around a closed loop in mechanical network models, [62]. This restriction im­
posed by the geometric constraints (compatibility requirement) states the continuity of space law
which could logically be called velocity or displacement principle, [52]. It bases on the elasticity
or the property of resisting deformation which is involved in interactions between sets of objects
as well as the other property of matter given by its inertia or the property of resisting change of
motion. Thus, the interactions are caused by the two properties of matter defining the mechanical
duality in consequence of which interconnective relations should be stated. Since the across
power variables (velocities), or else the integrated across power variables (displacements) , are
connected in addition to the commonly performed combining of through power variables (forces)
two sets of constraints can be formulated. Accordingly, they are termed dual interconnective
relations, [15]. By this a second set of performance equations (or of equations of interconnec­
tion) is available being essential for the derivation of the mechanical network equations , [15],
[51], [52], [54], [62].

Basic Tool. Using the topological relationships which depend on the connection
of the elements in the network diagram, as pointed out in 2.3.5, the fundamental
laws of general network analysis are utilized for the derivation of sets of network
equations.

For any translational mechanical system the fol1owing sets of relationships
may be stated:
Component relationships between power variables for each isolated element

Material or constitutive relationships defined by the dual relations between
momentum and velocity just as between force and displacement in linear form

p = mv (4.la) F = ks (4.1b).

Temporal or dynamic relationships expressed by the dual relations between
force and momentum as between velocity and displacement

F = dp/dt (4.2a) v = ds/dt (4.2b).

Spatial or interconnective relationships between power variables including the
dual relations corresponding to flow and effort variables (through and across vari­
ables)

Incidence (or vertex) relationship between forces (d' Alembert' s principle)

(4.3a) .

Boundary (or circuit) relationship between velocities (velocity principle)

(4.4a),
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thus, with reference to the associated temporal or dynamic relationship, Eq.
(4.2b), being also true for the relation between displacements

L Sj =0 (4.4b) .
j

In vibrations the stated dual interconnective relations are also termed force inter-
connection requirement and motion interconnection requirement, respectively,
[17].

(4.5)

(4.6).
VI = dst/dt

V2I = dS21/ dt

Example 4.1: Two-mass System. To demonstrate the procedure the two-mass example, al­
ready treated in 2.3.2 and 2.3.4 for illustrating the direct representation of simple systems, will
be taken up again. For the network diagram (mechanical circuit), Fig. 2.26b, and its associated
oriented linear graph (mechanical signal flow graph), Fig. 2.27b, the initial position of vibratory
motion should be fixed by the introduced static equilibrium condition. Hence, the relations will
be reduced to governing equations of the free vibration of an undamped two-degree-of-freedom
system. Being not affected by gravitational sources the branches (or line segments) for the force
generators (weight forces) are cancelled and the interconnections thus imply the equivalence
relation to the two-mass system outlined in Fig. 2.25, since oscillating horizontally. Guided by
the associated system interconnecting diagrams, Fig. 2.26b and Fig. 2.27b, the system relation­
ships of the two-mass example may be summarized by inspection as follows:
Constitutive relationships for each component assumed to be linear

PI = mlvl Fsl = klsl

P2 =m2v2 ~2 = k2s21= k2(s2 - sl)
Dynamic relationships for each component

Fml =dPI/dt

Fm2 =dp2/dt

The constitutive and dynamic relationships are combined to give
Component relationships between individual power variables

Fml = ml dvJ!dt dFsI/dt = klvi

Fm2 =m2 dV2/dt dFs2/dt = k2v21
(4.7)

(4.8a)

(4.8b),

Fml + Fs1- Fs2 = 0

Fm2 + Fs2 = 0node (or vertex) 2:

Interconnective vertex and circuit relationships between through power variables , also termed
for ce requirement at
node (or vertex) I:

(4.llb)

(4.lla)

(4.IOa)

(4. lOb)

respectively between across power variables , also termed velocity requirement for

loop (or circuit) 2102: v2l + VI - v2 = 0 v 21 = v 2 - VI (4.9a)
loop (or circuit) 101: vlO - VI = 0 vlO = VI (4.9b).

The continuing step cons ists in selecting an independent set of power variables the derivatives

of which occur in the component relation set. In this case it is obviously FsI' Fs2' VI' V2 .

Accordingly the component and the interconnective relationships are combined to

(dFs1/dt) = klvi

(dFs2/dt) = k2V21 = k2(- v I + V2)

(dvI/dt) = Fm1/m1= (-Fs1+ Fs2)/ml

(dV2/dt) = Fm2/m2 = (-Fs2)/m2
to gain simultaneous 1st-order differential equations in the set of independent power variables,
rewritten in matrix notation
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o k, 0 [FSl]o -k2 k2 Fs2

mjl 0 0 VI

-I
-m2 0 0 v2

This set of equat ions completely defines the system behaviour when taken together with auxil­
iary equations relating displacement to velocity , etc . For known, fixed values of element pa­
rameters (time-invariant models) the future system behaviour is completely determined for any

given initial set of values of VI ' v 2 and Fst , Fs2 •

Such a set of system variables is called a set of state variables, and the pertaining simulta­
neous differenti al equations are termed the state equations of the network being the basic tool
of the state-space approach.

Fundamental Sets of Network Equations. In any method of network analysis an
independent set of vertex equations and an independent set of circuit equat ions
must be selected , since the total sets of these respective equations are obviously
not independ ent.

To establi sh fundamental relationships the concept of trees of linear graphs
must be entered . A tree of the linear graph is a connected subgraph which contains
all the nodes but no circuits, 2.3.5. The constituent element of the tree are termed
branches, and the remaining elements not belonging to the tree are termed chords.
Supposing that the system linear graph has e branches (elements) and n nodes
(vertices) it is obvious that the tree will have

i. (n - 1) branches, and
ii. (e - n + 1) chords .

A total set of 2e independent equations in the 2e power variables is obtained from
the e constitutive relationships and an application of .interconnective relationships
after choice of a tree:

Independent set of vertex equations. Any set of (n -1) vertex equations corre­
sponding to (n -1) distinct vertices is an independent set of vertex equations.

Independent set of circuit equations. Any set of (e - n + 1) circuit equations
corresponding to (e - n + 1) distinct circuits is an independent set of circuit equa­
tions.

In advanced theory of linear graphs those statements are enlarged upon a more
rigorous algebraic procedure using the matrix method. A set of independent fun­
damental loops equal in number to the number of chords is formed by inserting
the chords into the tree one at a time. Thus , for a given tree independent sets of
both, vertex and circuit equations can be defined in terms of a single matrix being
called the dynamic transformation matrix for a given network, [9], [15], [16],
[51], [52], [60].
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4.2
Frequency-response Characteristics
(Concepts of Mobility and Dynamic Compliance)

Experimental investigations of the dynamic characteristics of structures have
gained importance with respect to vibration data analysis using frequency con­
cepts for data reduction. The frequency-response function can be determined from
mobility measurements or measurements of related frequency-response functions ,
known as accelerance and dynamic compliance. Accelerance and dynamic com­
pliance differ from mobility only by the motion response which can be expressed
in terms of acceleration of displacement, respectively, instead of in terms of ve­
locity. For simplification in measurements only the term mobility is used, [18].

Some applications being typical for experimental investigations aim at

- predicting the dynamic response of structures to a known or assumed input ex­
citation;

- determining the modal characteristics of a structure (natural frequencies, mode
shapes and damping ratios) ;
determining the dynamic properties of materials in pure or composite form
subjected to cyclic load sequences (complex modulus of elasticity, fatigue, and
crack propagation).

A complete description of the frequency-response characteristic requires meas­
urements of translational forces and motions taken along three mutually perpen­
dicular axes as well as measurements of moments and rotational motions about
these axes. Although in most applications there is no need to determine the overall
mobility matrix being of size 6 N x 6 N for N locations of interest on a structure.
The requirements of vibration data analysis are often satisfied by measuring of
driving-point mobility and a few of transfer mobilities. Accordingly a force at a
single point in a single direction will be exerted and the translational response
motions at key points on the structure are recorded.

4.2.1
Equivalent Definitions of Frequency-response Function

For a lot of applications in experimental investigations the dynamic responses of a
vibratory system are specified by sinusoidal steady-state responses . Thus, the
various kinds of measured output/input ratios resulting from simple harmonic
motions are formed by the complex ratio of the motion-response phasor to the
phasor of the excitation force . Basing on the concept of complex excitations and
responses this ratio represents a complex system parameter, called the response
ratio ofphasors (complexor), as treated in 3.1.3 and 3.2.10.

Furthermore, the equivalent definitions of frequency-response function depend
on the kind of motion being expressed by preference in terms of velocity or dis­
placement. In the case of measuring of velocity the phasor ratio is designated the
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(mechanical) mobil ity, and since a displacement is recorded the corresponding
ratio will be designated the dynamic compliance.

(Mechanical) Mobility (phasor mobility) f (jWf)
The complex ratio of the velocity-response phasor, taken at a point in a mechani­
cal system, to the excitation force phasor at the same or another point in the sys­
tem, is designated the direct (or driving-point) and the transfer (mechanica l) mo­
bility of a structure f jj(jwr) , and fij(jw) , respectively, 3.2.11, Eqs. (3.190),

(3.191).
The mobility is sometimes called the mechanical admittance.

Dynamic Compliance (phasor compliance)~(jw f )

The complex ratio of the displacement-response phasor, taken at a point in a me­
chanical system, to the excitation fo rce phasor at the same or another point in the
system is designated the direct (or driving-point) and the transf er dynamic com­
pliance of a structure, ~ji (jwr), and ~ij (j wr), respectively, 3.2.11, Eqs.

(3.186b), (3. 187b).
The dynamic compliance is called the receptance by severa l authors.

Since the significant response is given by the resultant force to an exc iting motion
it proves convenient to form the inverse phasor ratio, defining the reciprocal of
the frequency-response function.

Remark on Reciprocals of Dynamic Characteristics. Historically, frequency-response func ­
tions of structures have often been expressed in terms of the recipro cal of one of the two dy ­
namic characteri stics pointed out before. Though being called mechanical impedance it should
be noted that the arithmetic reciprocal of mechanical mobility does not, in general, represent
any of the elements of the impedance matrix of the structure.

Mechanical Impedance (phasor impedance) ~(jw)

The complex ratio of the force (-response) phasor to the (excitation) velocity pha­
sor where the force and velocity may be taken at the same or different points in
the system, is designated the direct (or driving-point) and the transfer impedance
of a structure Zjj(jwr) , and Zij(jwf). respectively, 3.2.11, Eqs. (3.192), (3.193).

The mechanical impeda nce is the inverse of the (mechanical) mobility

~(jWf ) = r1(jW f) (4.13).

Mob ility test data cannot be used directly as part of an analytic impeda nce mode l of the struc ­
ture. To achieve compat ibility of the data and the model , the impedance matrix of the model
must be inverted to a mobility matrix , or vice versa, [18]. The same condi tions are to be noticed
regard ing dynamic compliance test data used as part of a dynamic stiffness model of the struc­
ture.

Dynamic Stiffness (phasor stiffness) K(jWf)
The com plex ratio of the forc e (-response) phasor to the (excitation) displacement
phasor where the force and disp lacemen t may be taken at the same or diffe rent
points in the system, is designated the direct (or driving-point) and the transfer
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dynamic stiffness of a structure , Kii (jwr), and Kij(jW r) , respectively, 3.2.11,

Eqs. (3.188b), (3.189b).
The dynamic stiffness is the inverse of the dynamic compliance

K(jwr)=£-I(jw r) (4.14).

The conjunct ion with the transfer function analysis, 3.2.10, becomes .obvious
for a sinusoidal excitation as special type of forcing function. The defined kinds of
measured output/input ratios are related to the frequency transfer function the util­
ity of which is evident choosing a particular form with reference to the different
problems in vibrations.

Review of Mobility and Mechanical Impedance Concepts. Historically, the "black-box" tech­
nique was developed in the early part of 20th century by electrical engineers for handling the
analysis of linear circuits. It was extended in the early 1920' s by acousticians to conne ct elec­
trical, mechanical, and acoustical elements, and further extended since the late 1930' s to the
present control theory . Mechanic al impedance methods become popul ar in vibration theory
when problems were attacked by drawing an analogous electric circuit to take advantage of the
highly developed techniques of electric circuitry . There came to the fore a problem of choice
between two analog ies. Force analogous to current results in a mechanical-mobility analogue
whereas force analog ous to voltage results in a mechanical-impedance analogue, see 2.2 .3. The
mobili ty fo rm of the analogy. also called true-connected or force-to-current analogy, has been
strongly advocated by W. Hiihnle and F. A. Firestone, [12] , [13]. [61]. They pointed out that the
impedance form of the analogy , also called dual or force-to -volute analogy, lacked complete­
ness in the laws for combining series and parallel elements, as well as interconnect ive relation­
ships between power variables (Kirchhoff's laws). A definitive treatment of analogues and
dualogues concerning topological relationships as well as the formulation of vertex and circuit
equations of relating networks was given by H. M. Trent , [62]. Notwithstanding lacking com­
pleteness mechanical impeda nce apparently has become the more popular of the two concepts.

Severa l endeavo urs being taken to remove lacks in electromechanical analogies should be
mentioned. Mechanical analogues of electrical network s only exis t in a direct sense when all
the electrica l network capaci tors have a single terminal in common which may be taken as the
reference terminal. This correspo nds with the Newtonian reality of all the masses to be meas­
ured with respect to the inertial reference system. This difficult y may be overcome by adding
ideal couplers, i.e., unity-ratio transformers in the electrical network to isolate the electrical
capacitors and break direct connections between them. The transformers may then be replaced
by their analogue given by the lever as a mechanical transformer. Consequently, variou s mod­
els of levered mass elements have been introduced for extendin g electromechanical analogies
by E. Lehr, G. Lander, K. Federn, L. Cremer, and K. Klotter, [63] to [66). Thus, using two­
terminal mass elements, called the "new elements", analogou s networks can be formed includ­
ing the series connection of masses, [53]. A general treatment of analogues and dualogues for
network models. as presented by A. G. J. McFarlane, [15], bases on the linear graph theory .
Distinguishing between planar and nonplanar graphs it is turned out, that a nonplanar graph
does not have a dual. Well developed circuit , vertex and mixed transform analysis is utilized for
network modellin g of particular systems by constructing the corresponding oriented linear
graph on the base of analogues irrespective of the physical system in terms of the storage and
the conversion of energy.

In view of impedance measurements fundamental aspects of the analogies have been traced
by G.J. 0 'Hara, [67]. Impedance measurements using blocking force responses apply a single
excitation velocity, and an array of ratios of forces respond ing to this excitation velocity is
measured. The structure has been deliberately cons trained by blocking forces that maintain the



www.manaraa.com

210 4 Transform Analysis Methods of Vibrating Systems

veloc ity at zero at all point s scheduled for observa tion of their respective impedance elements
(blocked impedance data). The impedance elements being observed will therefore depend upon
the numb er of locat ion of the blocking forces. Mob ility measurements to the contrary apply a
single exc itation force, and an array of ratios of velocities respond ing to this exci tation force is
measured . The structure has not been artificia lly constrained. No other externa l forces must be
exerted at the point s of interest durin g the measurements run . Observations made anywhere on
the system do not affect one another. Therefore, mobilities describe invariant characteris tics of
the whole structure, impedances generally concern themselves only with segments. Blocked
impedance data are depend ent upon the numb er of observation points (degrees of freedom)
considered and, consequently, do not possess invar iant characteristics of a structure. It is obvi­
ous, with reference to Eq. (4.13), that single impedance elements can be calculated from meas­
urements which were obtained without using blocking forces (free impedanc e data ). However,
this is equi valent to measuring mobilities (experimental mobility matrix) and calculating im­
pedances, not measuring impedances.

Thi s fundamental knowledge from experimental inve stigati ons in vibration and shock has
been adopted for basic definitions and requirements in international standards, [18).

In practice it is much easier to measure mobility than blocked mechanical im­
pedance because the boundary conditions of zero velocity at all points being ob­
served are very difficult or impossible to achieve in practical experimental proce­
dure s. Thu s, it is generally not possible to determine transfer mechanical imped­
ances by experimental means, whereas transfer mobilities are approachable by
measurements. However, in the special case in which a single point on the struc­
ture is considered the impedance matr ix and the mobility matr ix only have a sin­
gle term , and therefore, the impedan ce (driving-point impedance) being a free
impedance is the arithmetic reciprocal of the mobility .

Comparing Impedance and Mobility Data. Experimental investigations of the
dynamic characteristics of structures result in mobility type data. In mathematical
modelling, howe ver, it is generally easie r to use mass and stiffness matrices. In the
frequency domain, these result in blocked impedance data. As being not an in­
variant characteristic of a structure the elem ents of an impedance matrix can be
compared with those of an inverted mobility matrix only if all degrees of freedom
of both matrices (points and directions) are identical. If the mathematical model,
equally its impedance matrix, has more degrees of freedom than the experimental
mobility matr ix, it is necessary to con vert impedance to mobility to allow com­
parison with the corresponding elements of an experimentally-determined mobil ­
ity matrix, rather than vice versa, [68] , [18] .

Mobility Data and Modal Analysis. The major advantage of impedance and mo­
bility methods for structural dynamics lies in what is usually called the building
block approach. In contra st to the classical approach one obtains the vibrat ion at
only those points in the system which are of intere st or are required to investigate
design chan ges and/or dynam ic performance of a particul ar system. Specified
forms of frequency-response function are obtain ed by sinusoidally exciting a
structure at a point and simultaneously measuring its vibrat ional response at the
same or another point in the system as the forcing frequen cy is varied within a
range of interest. Having determ ined the necessary mobility functions for variou s
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components of a system , it is possible to obtain the overall mobility of the com­
posite system by combining these partial response characteristics analytically ,
[69] , [70).

Modal analysis being useful to link experimental analysis with mathematical
modelling is convenient for predictin g the dynamic interaction of interconnected
sub-structures. When using experimental mobility data, modal analysis uses sta­
tistical methods to extract modal parameters, including natural frequencies ,
damping and modal mass (or stiffne ss), within the frequency range of interest.
When using mathematical models, the modal parameters can be extracted from
the computed mass, stiffness and damping matrices of the sub-structures by eigen­
value/eigen-vector computation or other matrix reduction procedures. These pro­
cedures are often more efficient than the direct inversion of the entire impedance
matrix , [71], [72).

Review ofDynamic Compliance and Stiffness Concepts. Historically, mechanical impedance
concepts originate in acoustics for modelling mixed domain system structures. Subsequently
impedance and mobility methods turned out to be an effective tool for analysing the dynamic
characteristics of complex structures as demonstrated by R. Plunkett, [73] , and S. H. Crandall,
[17] . Nevertheless, investigations into the dyn amic behaviour of machine structures in opera­
tions focus their attention to vibratory effects on deformation to gather from displacement in­
stead of velocity. Thus, the corresponding output/input ratios relating displacement and force
define the equivalent forms of frequ ency-response functi on and its inverse which are desig­
nated dynamic compliance, occasionally rece ptance, or dynamic stiffness, respectively.

The equi valent notion receptance has been introduced by W. J. Duncan and M. A. Biot, [74].
The concept of receptance (or "d ynamic flexibility") which had been dealt with in detail by R.
E. D. Bishop and D. C. Johnson, [75], provides a link betw een the treatment of simple systems,
mult i-degree -of-freedom systems, and cont inuous (distributed) sys tems. It also pro vides a tool
for breaking down complex problems into simpler parts whose receptances are known or tabu­
lated. The overall receptance of composite systems will be inve stigated by connecting constitu­
ent parts (subsystems) or by adding a remote sys tem (component).

B. M. Wundt, [76] , is to be credit ed with developin g a dynami c stiffness method for pre ­
dict ing the actual critical beh aviour of turbine rotors.Taking into con sideration the support
sys tem the dynamic stiffness at the bearings includes the effects of bearing bracket masses and
stiffnesses as well as the bearing oil film stiffness. For a given rotor configuration there will be
a continuous variation in dynamic stiffness as the speed varies. At particular speeds the rotor
system dynamic stiffness is equal in magnitude and opposite in pha se to the support system
dynamic stiffness. Those speeds are critical speeds of the combined rotor-support system which
may be determined by predictions, factory test, and field data being correlated , [77] .

Instead of mechanical impedance the term "dynamic stiffness" wa s suggested by F. Eisele,
[78], for describing dynamic effects on the stiffness of machine tool structures. Contrary to
impedance assigned to mech anical circuit s the equivalent notion dynamic stiffness (or dynre­

sistance) is associated with the vibration resi stance against deformation of structures in opera­
tion . Giving evidence on frequency-depending effects caused by forced oscillation as well as by

self-excited vibration the dynamic stiffness thus turned out to be a dynamic characteristic well
suited to common imaginations in structural and vibration engineering. Various step s in engi­
neering design have been taken to enlarge the dynamic stiffness of machine structures. The

main attention is directed to the types of instability causing chatter vibrations of metal-cutting
machine tool s. Attempts to inten sify damping effects on the sys tem including flexible supports,
frictional damping of restrained joints as well as dynamic vibrat ion absorbers proved to be very
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promising. Various improvements on structural dynamic characteristics covering the frequency
range of interest already have been realized by Sadowy, Lysen, Korner, Loewenfeld, Corbach,
Armbruster, Stefaniak , a.o., [79] to [85].

Advances in vibration measurements enabled the determination of three-dimensional dy­
namic characteristics of complex machine tool structures, as pointed out by M. Weck and K.
Teipel, [86]. Graphical interpretations involving tool-workpiece interrelations result in fre­
quency-response curves of oriented dynamic compliances.

Basic Requirements for Mobility Measurements. Requirements for the selection of motion
transducers, force transducers and impedance heads , as well as transducer attachment methods
and operational calibration measures are standardized to a certain extent using single-point
translation excitation with an attached exciter up to impact excitation with an exciter being not
attached to the structure , [72], [46].

The basic criteria of all measurement transducers which are important in acquiring ade­
quate mobility data are as follows :

- Transducers shall have sufficient sensivity and low noise in order to obtain an adequate
signal-to-noise ratio of the measurement chain for covering the dynamic range of the mobil­
ity of the structure;

- the natural frequency of the response transducer shall be far enough below or above the
frequency range of interest that no unacceptable phase shift will occur;

- transducer sensivity shall be stable with time and have negligible d.c. drift;
- transducers shall be insensitive to extraneous environmental effects, such as temperature,

humidity , magnetic, electrical and acoustical fields, strain and cross-axis inputs;
- transducer mass and rotational inertia of exciters shall be small so as to avoid dynamic

loading of the structure under test, [87], [18].

Basic Tool. Dynamic Stiffness and dynamic compliance have turned to be an
effective tool for handling vibration problems that bases on synthetical methods
and aims at frequency-domain representation (eo-domain modelling) . Mathemati­
cal systems for lumped parameter models can be derived either from mechanical
network analysis as demonstrated by K. Federn using the dual type of electrome ­
chanical analogies (founded on impedance analogue) , [65], [88], or else from the
fundamental equations of mechanics as pointed out by H.-Th. Woernle , [89], bas­
ing on the method of influence coeffi cients. For both of the outlined synthetical
methods the relation to transfer matrices is obvious . This is verified by defining
the dynamic stiffness a column matrix referred to a station limiting a section. All
sections are connected to a complex system structure by repeated multiplication,
[65]. In the latter case transfer matrix procedure is applied to oscillatory elastic
chains using continued-fraction development for repeated structures, [89], [53].

4.2.2
Dynamic Characteristics of Mechanical Elements.i.'Component
Mobilities and Dynamic Compliances

The behaviour of the elementary mechanical elements, treated in 2.3.2, can be
expressed by a defined or measured relationship between an applied force F
(through power variable) and the resulting motion in terms of the velocity v
(across power variable) or of the displacement s (integrated across power variable)
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resulting in the component relationships between a pair of power variables, called
the T-storage element law (Hooke's law)

t

F = ks or F = kf OOt (4.15a),
o

the dissipator element law (viscous damping behaviour)
F = cs or F =cv (4.15b),

the P-storage-element law (Newton's second law)
F = ms or F = mb (4.15c),

where for the spring and the damper relative motions between the two connection
points or terminals 1, 2

s = Ss =sl - s2 V =~v = vI - v2

are taken in general, and for the mass its absolute motion between the upper con­
nection point (object terminal) 1 and a fixed point in space (inertial reference sys­
tem)

s = sl V = vI

is measured, Fig. 4.1 .
The component relationships for each isolated element involve constitutive and

dynamic relationships, 4.1.2, Eqs. (4.1a) to (4.1b), which may be graphically in­
terpreted by the characteristics defining a potential energy storage element, a vis­
cous frictional dissipator element, and a kinetic storage element, Fig. 4.2.

Phasor Relations for Mechanical Elements
Applying a complex excitation (forcing function), 3.1.3, Eq. (3.48), the dynamic
responses are represented by the complex responses expressed in terms of the dis-

Object

~.................. .... ........ ... ... ... ... ........... ... .... ... ... ............ ... ....
terminal

1 m

Sh s~,~v

S~ Reference
terminal

Fig. 4.1. Network symbols for basic linear time-invariant mechanical elements. a Spring;
b damper; c mass

FtZ: Fil'. FV~~J
S s=v s=v, s=v

Fig.4.2. Linear element relationships. a Spring characteristic; b dissipator (damper) char­
acteristic; c mass characteristic
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placement, the velocity, and the acceleration

,J.(t) = sejOl fl = (~/ jwr) ejOl fl

~(t)=jwf ·~ejOlfl= V ejOl fl (4.16).

~(t)=-w~ .~ejOlfl =jwf ' ~ ejOl fl

By adopting complex sinusoids only sinusoidal steady-state responses (forced
vibrations) are specified . Thus, using the phasor representation of power variables
(phasor method), each mechanical element can be characterized by a phasor rela­
tion between the applied force E and either the displacement ~, or equivalently

the velocity y.
E=Ki~ (4.l7a) ; E=Z;y. (4.18a).

Hence , the complex ratios (complexors) defined by the pertinent phasor quan­
tities are termed
the phasor stiffnesses K, of the elementary (or l-port} components k, c, m

E k~ K k ~

E jcwf ~ «, ~ (4.17b)

fr -mwU «; ~

or, respectively,
the phasor impedances Zj of the elementary (or l-port) components k, c, m

E=(- j k / wr)y. =z, Y.
E= cy' = z, Y. (4.18b),

E= jmwfY. =Zmy.
as pointed out in 3.2.10, (phasor ratios) .

Costumarily, the symbol K is used for dynamic stiffness and Z for mechanical
impedance referring electrical circuit elements, with a subscript i as required to
indicate the specific element.

Transform Relations for Mechanical Elements
In a more generalized sense, taking transient and random vibrations into consid­
eration, the mechanical elements will be characterized by a corresponding relation
of the Fourier transforms (spectral densities) between the applied force f(w) and

the pertinent motion variable ~(w), or ~(w)

f(w)=Ki~(w) (4.17c) ; f(w)=Zi~(w) (4.18c) .

The constitutive and dynamic relationships, Eq. (4.lb), result with reference to the
differentiation theorem (Fourier transform method) , 3.2.3, Eq. (3.74b), in the
transformed component relationships
associated with the displacement spectrum ~(w)

f(w) = (jw)ok ,J.(w) = k,J.(w) = Kk(jW)~(W)

f..{w) = (jW)IC ,J.(w) = jcw,J.(w) = Kc(jw),J.(w) (4.l7d)

f(w) = (jW)2 m,J.(W) = -mw2,J.(w) = Km(jw),J.(w)
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or, respectively, with the velocity spectrum ~(w)

f.(w) = ( j wr l k~ (w) = -j(k/w) ~(w) = Zk(j w)~(w)

f.(w) = (jw)oc ~(w) = c ~ (w) = Zc(jw) ~(w) (4. 18d).

f.(w) = (jw)l m~(w) = jmw~(w) = Zm(jw)~(w)

The dynamic characteristics of the elementary (or l-port) elements thus can be
interpreted by the transf orm quotients of the pertinent Fourier transforms being
design ated
the dynamic stiffness ofthe spring

Kk (jz») = k (4.19a),

the dynamic stiffness ofthe damper
K c(jw) = j c w (4. 19b),

the dynamic stiffness of the mass

K m (jzo ) = -mw 2 (4.19c),

or, respectively,
the mechanical impedance of the spring

Zdjw) = - jk/w (4.20a),

the mechanical impedance of the damper
Z, ( jz») = c (4.20b),

the mechanical impedance of the mass
Zm (jw ) = jmw (4.20c).

The dynamic characteristics of the mechanical elements are defined in terms of
phasor relations or of transform relations. The phasor relations are graphically
repre sented by constant (resting) phasors (complexors), and the transform rela­
tions by logarithmic fr equency plots (magnitude plots), Fig. 4.3.

The vector representation in the complex plane illustrates the relation of the
dynamic characteristics of the different elements to oneanother by a counter­
clockwise shift in phase around the angle +1t/ 2 corresponding to the order of re-

peated multiplying with the differential factor j w f .

The magnitude plots (gains) illustrate the dynamic characteristics for each ele­
ment by straight lines with different slopes. The slopes are accordant to the degree

of the frequency factor ( j w / including sign and value of its power exponent e.
Regarding the component stiffnesses, Fig. 4.3a, the damper and, first of all, the
mass are more operative at high frequencies, whereas the dynamic stiffness of the
spring is independ ent of frequency. Following the mechanic al impedance concept,
Fig. 4.3b, the magnitude plot of the spring is effective at low frequencies, that one
of the mass at high frequencies, whilst the mechan ical impedance of the damper
behaves constantly with frequency.

Mechanical elements can also be characterized by a transform relation being
the reciprocal of the defined dynamic characteristics, Eqs. (4.19), (4.20).

The inverse response transform quotients of the pertinent Fourier transform s
are designated
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j im K;

a ReKK I
k

jlmZj

IKilig IZil,g
IKml=rnw

VinK
k c

Wo Wig Wo Wig
a b

Fig. 4.3. Phasor diagrams and logarithmic frequency plots (magnitude plots) . a Compo­
nent dynamic stiffnesses; b component mechanical impedances

the dynamic compliance of the spring
Ck (jw) = 1/ Kdjw) = 1/k

the dynamic compliance of the damper
Cc(jw) = 1/Kc(j w ) = -j/(cw)

the dynamic compliance of the mass

Cm(jw) = 1/Km(j w ) = - 1/(mw2
)

(4.2la),

(4.2 lb) ,

(4.2lc),

or, respectively,
the mobil ity of the spring

Yd jw) =l/Zd j w ) = j w/k (4.22a),

the mobility of the damper
Yc (jw) = 1/Z; (jw ) = 1/c (4.22b),

the mobility of the mass
Ym(jz» ) = 1/Zm(j w ) = - j/ (m w ) (4.22c).

The graphical representation of the corresponding inverse dynamic characteristics
is given by Fig. 4.4.

The logarithmic gains of the reciprocals are simply the negatives of the corre­
sponding originals. As a result, the magnitude plots of the inverse component
characteristics are the mirror images of the original ones, see Fig. 4.3.
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jim 1';

Re 1';

a
Fig. 4.4. Phasor diagrams and logarithmic frequency plots (magnitude plots). a Compo­
nent dynamiccompliances; b component mobilities

4.2.3
Dynamic Characteristics of Composite Systems. Overall Mobility
and Dynamic Compliance

The overall behaviour of the composite mechanical system, treated in 2.3.5 , can be
expressed in terms of mathematical relations using the interconnection pattern of a
network (topological relationships) . Including the dual relations corresponding to
flow and effort variables (through and across variables) the network diagram leads
to the spatial or interconnective relationships between the power variables.

Force Interconnection Requirement. For translational mechanical networks a
junction (node or mechanical vertex) usually combining the term inals of several
components can be equivalently illustrated by a rod (shaft) or a bar (traverse),
both symbolizing a rigid, inertia free , linearly guided point of connection, Fig.
4.5 .

a
F'-1t~

b
Fig. 4.5. Network symbols of a junction. a Rod (shaft) after K. Fedem [65]; b bar (trav­
erse) after S.H. Crandall [17]. [54], and H.Th. Woemle [89]
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(4.3b).LFj =0
j

Basing on dynamic equilibrium statement (d' Alembert's principle) the inter­
connective constraint on the pertinent flow variables at a common node (or ver­
tex) results in
the incidence (or vertex) relationship between force s

(or LTj =0)
I

For rotational mechanical networks the same interconnective constraint holds
true expressed in parenthesis between torques around a common axis.

Motion Interconnection Requirement. For translational mechanical networks the
connection of two junctions (nodes or mechanical vertices) forms a branch (line
segment) which can be illustrated by the dynamic model "2-terminal element", a
rigid link, finally a "black" box, thus symbolizing either an elementary (or l-port)
mechanical element, or a rigid (bridged) connection, or else a component of un­
specified or unknown relations, respectively, Fig. 4.6.

The inertial reference system is labelled rod or bar 0 (reference framework).
By a connected subnetwork having only two branches incident with each of the

two junctions (rods or bars) a closed path will be formed . Any such closed path is
termed a boundary (loop) of a network, Fig. 4.7.

A boundary or loop is also called a circuit (or a mesh). A mechanical circuit is
defined as a closed path in space which includes one point on the inertial refer­
ence frame, [IS], [51]. It is obvious that the motion around a circuit will be con­
sidered as not restricted (compatibility requirement).

Rod 1 or Rod 0
Branch ...-r=

Rod 2

+4 ~52 ~5!•.

V ~V2 ~V1

52 51
v2 v1a

or BarD

Fig. 4.6. Network symbol of an unspecified branch. a Junctions as rods; b junctions as
bars



www.manaraa.com

4.2 Frequency-response Characterists 219

-r--------r- Rod 1

2

Rod 3
~53 ~52

~V3 ~V2

53 52 5,
a V3 V2 V,

Ba~r1

l- ~53 ± ~52 ~r
~ ~V3 ~V2,-+-,

53 52 51
b ~ ~ ~

Fig. 4.7. Subnetwork of an unspecified boundary (loop). a Junctions as rods; b junctions
as bars

(4.4c),Ltlsj == 0
i

Basing on the statement of geometric constraints (velocity or displacement
principle) the interconnective constraint on the pertinent effort variables around
any closed path (loop) results in
the boundary (or circuit) relationship between relative displacements

(or ~Clqlj==O)
I

being also true for the relation between relative velocities

t ClVj == 0 (or t!l¢Jj == 0) (4.4d).

For rotational mechanical networks the same interconnective constraints are
valid expressed in parenthesis between relative angular displacements or veloci­
ties around a common axis .

Fundamental Configurations of Mechanical Elements (parallel-series
connections)
The two sets of interconnective constraints on power variables, Eqs. (4.3b), (4.4c),
(4.4d), may be regarded as a generalization of Kirchhoff's laws about mechanical
circuits . The pair of postulates being necessary and sufficient for the conservation
of energy in the mechanical network model is basic for an overall theoretical
analysis of vibration systems.
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A direct derivation of composite dynamic characteristics by viewing will be
rendered possible for simple circuits. For this the dual interconnective relation s
are applied to special types of subsystem configurations known as the fundamen­
tal config urations connecting elements either in parallel or in series.

Elements in Parallel. Components connected in parallel are positively actuated
by a coupler imposing on the structure a guided motion, so that the displacem ent
or velocity at the connection rod or bar is common across all the elements, Fig.
4.8.

Parallel connection is indicated by the special f eature of total blocking of the
structure (with all the other connection points of the system "blocked") since any
of the elements is constrained to have zero velocity.

Considering the sinusoidal steady state the force and motion variable s can be
written in terms of phasor quantities, furthermore the dynami c characteri stics in
terms of phasor relations.

Force interconnection requirement (vertex postulate):
,.. ,.. A A

f... = F] + F2 + F3 (4.23)
- - -

implies that the force phasors sum up through the elements to the total force pha­
sor.

Motion interconnection requirement (circuit postulate):
A " A A

~ = 51 = 5 2 = 53 (4.24a)

is simply that the displacement phasor across all the elements is the same.
Forming the corresponding phasor ratios (force-displacement relations)

F FI F2 F3
===+=+= (4.24b)
~ sJ S2 s3

the overall dynamic stiffness ofa parallel-connected structure

K(jOJf) = KJ + K2 + K3 = Kk + K, + Km = k + j COJ f - mOJ ~ (4.25a)

makes evident that the component dynamic stiffnesses add.

a

s.-....
v

b
Fig.4.8. Parallel-connected basic elements. a Junction as a rod; b junction as a bar
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The same interconnective constraints are valid if motion will be expressed by
the velocity phasor across all the elements

"" ,.. ,.. ,..
~ = VI = V2 = V3 (4.26a).

Forming the corresponding phasor ratios (force-velocity relations)

F Fi F2 F3
-;:-=A +A +A
V vI V2 v3

the overall mechanical impedance ofa parallel-connected structure

f:(jwf) = ZI + Z2+ Z3= Zk + Zc + Zm = - j ;f + c + jmwf (4.27a)

makes evident that the component mechanical impedances add.
Sinusoidal steady -state response (forced vibration) occurs in a mechanical cir­

cuit being subjected to a simple harmonic excitation. In the case of a motion being
applied to the structure the significant response is given by the resultant force.
Expressing the exciting motion in terms of a displacement the response ratio of
phasors taken at the same point in the system is designated
the driving-point (or direct) dynamic stiffness of the structure

K(jw f) = ~ = (k - mto ~ ) + j CW f = K Re + j Kim- s

a complex ratio (complexor) with
the real part (active dynamic stiffness)

KRe =k-mw~

and the imaginary part (reactive dynamic stiffness)

KIm =cWf

(4.25b) ,

(4.28a),

(4.28b) .

The significant response is also given by expressing the exciting motion in
terms of velocity . The response ratio of phasors at the same point defines
the driving-point (or direct) mechanical impedance ofthe structure

f:(jwf) = ~ = c + j(mwf _..l:..-) = R + jX (4.27b),
~ wf

a complex ratio (complexor) with
the real part (mechanical resistance)

R = c (4.29a) ,
and the imaginary part (mechanical reactance)

X=mwf -(k/wr) (4.29b) .

For the present network configuration the resultant force phasor f.. can be re­

written as an algebraic product of the exciting motion phasor ~, or ~ , and the

dynamic characteristic of the composite system expressed by
the phasor stiffness ofthe parallel-connected structure K(jill f )

t =[(k - milln+ j eill r] i =K (jill f ) i (4.30) ,
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or, respectively, by
the phasor impedance ofthe parallel-connected structure ~(jWf)

t:=[C+j(mWf- :J]~=~(jWf)~ (4.31).

The related characteristics, Eqs. (4.25a,b), (4.27a,b), can be converted into one
another with ease by multiplying the phasor stiffness, Eq. (4.25a,b), and jWf to-

gether, or respectively, the phasor impedance, Eq. (4.27a,b), and lj(jwf) to­

gether, whereat jWf is representing the 1st derivative of phasors, and lj(jwf) is

denoting the integral of phasors

K(jwf) = jWf ~(jwf) <=> Z(jwf) = -. 1_ K(jwf) (4.32).
- JWf -

The overall dynamic behaviour of mechanical elements connected in parallel is
characterized by adding the component mechanical impedances, Eq. (4.27a) .
Though being analogous to the combination of electrical system components the
summing up of component impedances nevertheless describes a series-connected
electric circuit with reference to the "classical" type of electromechanical analo­
gies (dual or force-to -voltage analogy), 2.2.3.

Following the concept of related characteristics by adding the component dy­
namic stiffnesses, Eq. (4.25a), the presented analogy has been modified to the
"practical" type by K. Federn, [65],4.2.1.

Using the vector representation of response phasor ratios the overall frequency
response can be plotted in terms of polar coordinates by the locus of K(jw) , and

of ~(jw) , Eqs. (4.25a,b) , (4.27a,b), in the complex plane called, in this case, the

dynamic stiffness plane, or the mechanical impedance plane, respectively , Fig.
4.9 .

The composite polar frequency-response loci (Nyquist plots), see 3.2.11, of
dynamic stiffness and mechanical impedance can be constructed by graphical
vector addition of contributions made by the individual phasor ratios. The steady­
state interrelation of mechanical components is illustrated by the phasor ratio
polygon combining the individual characteristics with the composite dynamic
characteristic of the parallel-connected structure.

Response Data Plotting. Polar plots (Nyquist plots) of normali zed dynamic stiffness are shown
in Fig. 8.5 of the Appendix 8 .

The composite logarithmic frequency plots (Bode plots) also can be con­
structed by summing up the contributions of component curves, Fig. 4.10.

Beyond resonance the dynamic stiffness approaches straight lines appertaining
to one of the storage element characteristics as shown in Fig. 4.3 . This property is
used for reducing the frequency response plotting to broken line sketching by a
straight-line approximation, Fig. 4.1Oa.

Following the mechanical impedance concept, Fig. 4. lOb, the symmetric com­
posite curve is approximated by a low-frequency and a high-frequency asymptote
which intersect at the corner frequency equalling natural frequency W 0 .
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Fig. 4.9. Phaso r diagrams for paral lel-connected basic elements. a In the dynamic stiffness
plane; b in the mechanical impedance plane

For lightly damped systems the exac t curves deviate substantial1y from the a­
symptotes. The corrections of the logar ithmic frequency curves to the asymptotic
approxima tion at the corner frequency are marked by the correction gains.

Response Data Plotting. Logarithmic frequency plots (Bode plots) of normalized dynamic stiff­
ness are shown in Fig. B.7, the composite logarithmic gain with the asymptotes inclusive are
visualized in Fig. B.8 of the Appendix B.

For most of the practical applications an external force acts on the structure, and the signifi­
cant response is given by a pertinent motion variable. Expressing phasor ratios in terms of the
inverse input-output relation, i.e., by the dynamic stiffness, or the mechanical impedance, those
composi te characteristics only have historical significance in vibration data analysis. All com­
monly used test procedures and requirements result in the determination of the reciprocal of
one of the above-named dynamic characteri stics, [18], [72], being designated as follows.

F
C(· ) - I
- JUlf - K(jUlf)

Forming the inverse phasor ratio (displacement-force relation) corres ponding
to Eq. (4.25b) taken at the same point in the system,
the driving-po int dynam ic complian ce of the structure

s

k - mUl ~ - jCUlf _ KRe - jK1m

(k -mUl~ ) + (c Ul f ) 2 K~e + Krm
(4.33a)
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a

1
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III

b
Fig. 4.10. Logarithmic frequency plots (magnitude plots) for parallel-connected basic ele­
ments. a Dynamicstiffness plots; b mechanical impedance plots

(4.35a)

(4.34a),

(4.34b) .

(4.36a),

is defined being a complex ratio (complexor), which is sometimes called the direct
receptance, with the real part (active dynamic compliance)

k-mw; K Re
CRe = 2 2 2 2 2

(k-mwr) +( CWr) KRe+KJm

and the imaginary part (reactive dynamic compliance)

C =_ CWr KIm

Jm (k - mw;)2 + (CW;) K~e + Kim

Forming the inverse phasor ratio (velocity-force relation) corresponding to Eq.
(4.27b) taken at the same point in the system,
the driving-point (mechanical) mobility of the structure

njwd = ~(j~r) ~
c- j(mwr _ ---L)

I mr
=. k=2 k2

C + J(mwr - -) C + (mar, - -)mr mr

is defined being a complex ratio (complexor), which is sometimes called the direct
mechanical admittance, with the real part (mechanical conductance)

G= C R
c 2 + (mio , - ---L)2 R 2 + x 2

mr
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and the imaginary part (mechanical susceptance)

mWr-~ X
B =- 2 k 2 2 2 (4.36b).

c +(mWr - -) R +X
W f

The related characteristics, Eqs. (4.33a) , (4.35a), can be converted into one an­
other with ease by multiplying the phasor compliance, Eq. (4.33a), and jWr to-

gether, or respectively, the phasor mobility , Eq. (4.35a), and 1/jw r together

C(jwr)=-.I-l:Cjwr) <:> rUwr)=jwrQjwr) (4.37).
- jWr

For a parallel connected structure the elements have the same displacement pha­
sor, respectively velocity phasor, across them, so that
the component dynamic compliances

1 = _1_ + _1 + _1_ (4.38),
~Uwr) Ck c, c,

and the component mobilities

1 = _1 + _1 + _1_ (4.39)
rUwr) Yk Yc Ym

combine by the reciprocal rule corresponding to Eqs. (4.25a), (4.27a).
For visualizing the graphical vector addition of contributions made by the re­

ciprocals of the individual phasor ratios the multiplication by
the conversion/actor

~Ck (4.40)

yields the reduction of phasor compliance, Eq. (4.33a), to the term
. Ck . Ck .

Ck =QjWr)+CQjWr}+CQjWr) (4.41),
c m

and, respectively, the multiplication by the conversion/actor
r Yk (4.42)

results in the reduction of phasor mobility, Eq. (4.35a), to the term

Yk = [Owr) + ~ [(jwr) + ~k [Owr) (4.43).
c m

Thus, the above-named inverse phasor ratios, Eqs. (4.33a), (4.35a), are fitted to
construct the composite polar frequency-response loci of the dynamic compliance
of the structure

(4.33b),
1 _ _ s

(k -mwi)+ jcwr - K(jwr) - iQjwr)= 1 : 1
Ck + Cc + Cm

as well as of the (mechanical) mobility of the structure
A

rUWr) = I ~ I . ( k) f:(j~r} ~ (4.35b).
- + - +- C+ j mWr - - F
Yk r, Ym Wf

The inverse phasor ratio polygon illustrates the combination of the reduced indi­
vidual characteristics with the composite dynamic characteristic of the parallel­
connected structure by use of the reciprocal rule, Fig. 4.11.
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Fig. 4.11. Phasor diagrams and polar plots for parallel-connected basic elements. a In the
dynamic compliance plane; b in the mobility plane

In the mobility plane the parallel mechanical system is represented by a circle
with the maximum magnitude at the natural (or resonance) frequency wo, Fig.

4.llb.

Response Data Plotting. Polar plots (Nyquist plots) of normalized dynamic compliance are
shown in Fig. B.I of the Appendix B.

The composite logarithmic frequency plots (Bode plots) also can be con­
structed by summing up the contributions of component curves, Fig. 4.12 .

The logarithmic gains of the reciprocals are only the negatives of the corre­
sponding originals. As a result , the magnitude plots of the inverse compo site char­
acteristics are the mirror images of the original ones as shown in Fig. 4.10. Just as
illustrated before logarithmic frequency plotting may be reduced to straight-line
approx imation using the magnitude plots of the inverse component characteristics
represented in Fig. 4.4 .
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Fig. 4.12. Logarithmic frequency plots (magnitude plots) for parallel-connected basic ele­
ments. a Dynamic compliance plots; b mobility plots

At low frequencies the dynamic compliance is governed almost entirely by the
spring. With regard to experimental investigations the parallel mechanical system
is said to be stiffness "controlled" below resonance . At high frequencies the mass
dominates. Thus, the parallel system is said to be mass "controlled" above reso­
nance, Fig . 4.l2a.

Following the (mechanical) mobility concept, Fig. 4.l2b, the symmetric com­
posite curve is approximated by a low-frequency and a high-frequency asymptote
intersecting at natural (or resonance) frequency (()o . At resonance the mobility is

equal to the reciprocal of the (viscous) damping coefficient c, and the correction
gain is marking out the gain difference between approximative and exact com­
posite curves.

The parallel system requires a small excitation-force input to the structure for
generating a resulting response motion at resonance frequency.

Response Data Plotting. Logarithmic frequency plots (Bode plots) of normalized dynamic
compliance are shown in Fig. 8 .3, the composite logarithmic gain withthe asymptotes inclusive
are visualized in Fig. B.4of the Appendix B.

Elements in Series. Components connected in series are separately actuated, each
of them between two yielding attachments transmitting through the structure an
excitation force, so that the force at the connecting rods or bars is common
through all the elements, Fig . 4.13.
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Fig.4.13. Series-connected basic elements. a Junctions as rods; b junctions as bars

Series connection is indicated by the special feature of zero restraining of the
structure (with all the other connection points of the system "free") since any of
the elements is constrained to have zero velocity .

Considering the sinusoidal steady state the system variables and dynamic char­
acter istics can be written in terms of phasors .
Force interconnection requirement (vertex postulate):

.... ,.. " "
f. = F] = Fz = F3 (4.44)

is simply that the force phasor through all of the elements is the same.
Motion interconnection requirement (circuit postulate):

~=L\s] +L\sz +L\S3 (4.45a)
-- -- --

implies that the (relative) displacement phasors sum up across the elements to the
total displacement phasor.

Forming the corre sponding phasor ratios (displacement-force relations)

s L\SI L\ sz L\ S3
-= = A + A + A (4.45b)
F F] Fz F3

the overall dynamic compliance ofa series-connected structure

Q j mf ) = C\ + Cz + C3 = Ck + Cc + Cm = -kl - j_l- - _I-z (4.46a)
em f mea f

make s evident that the component dynamic complian ces add.
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(4049a),

(4049b).

(4048b),

(4046b),

The same interconnective constraints are valid if motion will be expressed be­
tween the (relative) velocity phasors across all the elements

~ = ~ VI + ~ V2 + ~ V3 (4047a) .
-- -- --

Forming the corresponding phasor ratios (velocity-force relations)

V vI v2 v3
===+=+= (4047b)
1 11 12 13

the overall (mechanical) mobility ofa series-connected structure

Y(jwf) = Y1+ Y2 + Y3 = Yk + Yc + Ym = j wkf + 1_ j_l- (4048a)
- c mWf

makes evident that the component mobilities add .
Expressing the response motion in terms of a displacement the response ratio of

phasors taken at the same point in the system is designated
the driving -point (or direct) dynamic compliance of the structure

C( . ) (I I). I ~ C .C- JWf = k - --2 - J-- = --;;- = Re + J 1m
mWf eWf f.

being a complex ratio (complexor), which is sometimes called the direct recep­
tance, with the real part (active dynamic compliance)

I I
CRe =7(---2

eWf

and the imaginary part (reactive dynamic compliance)

C - __l_
Im - eWf

The significant response is also given by expressing the response motion in
terms of velocity . The response ratio of phasors at the same point defines
the driving-point (or direct) (mechanical) mobility of the structure

Y(jwr) =1 +j(~ -_1_) = ~ = G + jB
- e k mto , F

being a complex ratio (complexor), which is sometimes called the direct mechani­
cal admittance, with the real part (mechanical conductance)

G = 1 (4 .50a),
e

and the imaginary part (mechanical susceptance)

B=~__I- (4 .50b).
k wfm

For the present network configuration the response motion phasor ~ , or ~ , can

be rewritten as an algebraic product of the exciting force phasor E.. and the dy­

namic characteristic of the composite system expressed by

the phasor compliance ofthe series-connected structure ~(jro f)

~ =[(1 __1_
2

) - j_I_]E.. = ~(jWf)E.. (4 .51),
k mWf eWf
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(4.52) .

Fig.4.14. Phasor diagrams for
series-connected basic elements.
a In the dynamic compliance plane;
b in the mobility plane

1\

,g(jwf)=~

W series-
G arcy system

~resonance
Wo

B

jlmY

W

Y =_j_1
m mWf

b

a

or, respectively, by
the phasor mobility of the series-connected structure X(j W f )

V=[1 + j(~ -_1_)]F = Y(jliJf)F
- c k mWf - - -

The related characteristics , Egs. (4.46a,b), (4.48a,b), can be con verted into one
another with ease by multiplying the phasor compliance, Eq, (4.46a,b), and jliJ f

together, or respectively, the phasor mobil ity, Eq. (4.48a, b), and 1/(j rof) togeth er

C(jWf) = -. I_ l::(j w f ) <=> l::(jWf) = jWf Qjwf) (4.53) .
- JliJf

The overall dynamic behaviour of mechanical elements connected in series is
characterized by adding the component mobilities, which are sometimes called the
component mechanical admi ttances, Eq. (4.48a). Though being analogous to the
combination of electrica l system components the summing up of component ad­
mittances nevertheless describes a parallel-connected electric circuit with refer­
ence to the "classical" type of electromechanical analogies . Following the concept
of related characteristics by adding the component dynam ic compliances, Eq .
(4.46a) , the presented analogy has been called the "practical" type, [65].

Using the vector represe ntation of response phasor ratios the overall frequency
response can be plotted in terms of polar coordinates by the locus of ~(jwf) , and

of l::(jwf) , Eqs. (4.46a, b), (4.48a,b), in the complex plane called, in this case, the

dynamic compliance plane, or the mobility plane, respectively, Fig. 4.14.

jlm,g arc,g
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The composite polar frequency-response loci (Nyquist plots) of dynamic com­
pliance and (mechanical) mobility can be constructed by graphical vector addition
of individual phasor ratios . The combination of individual characteristics with the
composite dynamic characteristic of the series-connected structure is illustrated
by the phasor ratio polygon .

In the mobility plane the series mechanical system is represented by a straight
line crossing the real axis at natural (or resonance) frequency {Oo because the

imaginary part (mechanical susceptance) is zero at this frequency , Fig . 4.l4b.
The composite logarithmic frequency plots (Bode plots) also can be con­

structed by summing up the contributions of component curves, Fig . 4 .15.
At low frequencies the dynamic compliance is governed almost entirely by the

mass , whereas at high frequencies the spring dominates. Regarding test require­
ments the series mechanical system is thus said to be mass "controlled" below
resonance , and respectively stiffness "controlled" above resonance, Fig . 4.l5a.

Following the (mechanical) mobility concept, Fig. 4.l5b, logarithmic fre­
quency plotting evidently illustrates that the dynamic characteristic of the series
system is opposite to that of a parallel system as shown in Fig . 4.12b. At reso­
nance the mobility is equal to the reciprocal of the damping coefficient c, and the
correction gain is marked respecting a straight-line approximation by the compo­
nent characteristics represented in Fig . 4.4 .

a

1
lJn'jj(
c

b

IXI

Fig. 4.15. Logarithmic frequency plots (magnitude plots) for series-connected basic ele­
ments. a Dynamiccompliance plots; b mobility plots
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The resonance of a series mechanical system is often called an "antiresonance"
because a large excitation force is required to cause a motion response at natural
(or resonance) frequency . Considering test equipments for generating vibration
the series connection typifies a test structure mounted on the vibration exciter in
the environmental type of test rather than a parallel type specimen which would
require the mass to be resiliently supported by a spring (suspension system) , with
the mass directly attached to the exciter.

4.2.4
General Transform Analysis Principles. Mechanical Circuit Theorems

Structures are composed of several series and parallel combinations. The fre­
quency -response characteristic of an arbitrary mechanical system can be analysed
by subdiv iding a corresponding dynamic model system into the phasor or trans­
form relat ions of the elementary (or l-port) components. Applying the procedure

of simplification an equivalent model system even for a complicated structure
(lumped parameter system with large degrees of freedom) may be defined, and its
response when combined with a remote system of known dynam ic characteristic
can be predicted.

Network Diagram Reduction
Forming interconnective relationships by phasor ratios has proved an useful in­
strument of direct derivation of system relationships. Previously , the deriving of
interconnective relations by inspect ion has been confined to fundamental configu­
rations of elements only (parallel-series connections), 4.2.3 .

Nevertheless, a directly deriving procedure also can be obtained for mechan ical
circuits having passive elements both in parallel and in series. By use of devices
for simplification of networks a base for introducing a general lumped- system
analysis may be presented being appropriate to cover a lot of interconnection
problem s. Forming equivalent characteristics of repeated structures (or sections)
in parallel and in series a reduction of network diagrams can be realized appear­
ing as a counterpart to the reduction of block diagrams and signal flow graphs by
fundamental configurations, 2.1.4.

Basic Tool. For lumped-system analysis the reduction rules ofmechanical circuits
are formulated as follows :

- for mechanical subsystems (or sections) in parallel the component dynamic
stiffness (respectively the component mechanical impedances) have to be
added;

- for mechanical subsystems in series the component dynamic compliances (re­
spectively the component mobilities) have to be added.
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Combining all the sections by successive reduction the final result will be the dy­
namic characteristic of the composite system represented either by an overall dy­
namic stiffness or by its inverse, an overall dynamic compliance (respectively by
an overall mechanical impedance or mob ility) .

Maxwell's Reciprocity Theorem
Reciprocity, a transmission property related to transfer frequency-response char­
acteristics, presupposes systems being composed of linear and bilateral elements.
A bilateral element is one through which forces are transmitted equally well in
either direction passing its connection.

If a mechanical generator operates on a system of linear bilateral elements by
an excitation force (con stant-force generator) at the point i , the exciter can be re­
moved from i and placed at the point j on the structure; then the former motion
response at j will exist at i, provided the frequ ency characteristics at all points are
unchanged. Expressing the motion responses at j , respectively at i , in terms of a
displacement the reciprocity theorem states equality for
the transfer dynamic compliances (or cross receptance)

(4.54a).

Measuring response veloc ities at j and i the reciprocity theorem holds true for the
related characteristics at different points, i.e., for
the transfer (mechanical) mobilities

lij(jm) = }ji(jm) (4.55a) .
- -

This theorem also will be stated by use of a generator exerting a motion on the
structure at the point i (constant-displacement or constant-velocity generator), and
the resulting force is measured at the point j . Replacing the exciter from i to j the
reciprocals of the related characteristics at different points are equalling in terms
of
the transfer dynamic stiffness

Kij (j m) = Kji(j m) (4.54b),
- -

or, respectively, of
the transfer mechanical impedance

Zij(j m) = Zji(j m)
- -

(4 .55b) .

Reciprocity simplifies the analysis of two-way energy transmission systems
since the complex ratios of system relationships need be determined for only one
direction.

Superposition Theorem
If more than one mechanical generator acts on a system of linear bilateral ele­
ments, the force or motion response at a point in the system can be determined by
adding the response to each of the generators, taken at any time . Consequently,
the other generators are substituted for their restrained-state characteristic being
measured or defined, i.e. , for their internal impedances. This theorem is useful for
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analysing systems having several mechanical generators. Furthermore, the super­
position of sinusoidal terms simplifies the response calculation for mechanical
structures being subjected to periodic excitation functions.

Foster's Reactance Theorem
Mechanical circuits connecting only storage elements (springs and masses) with­
out including any dissipator element (damper) the interconnective relationships
result in a frequency-response characteristic taken at the same point on a structure
which is pure imaginary .

For that reason the driving-point impedance, or, respectively, the driving-point
stiffness and their reciprocals, have additional properties constituting Foster 's
theorem. Denoting the overall dynamic characteristic of a network configuration
without transmission loss by

G(jm) = jlmG(jm) = jG(m)

then the following properties hold in general:

i. The system function G( m) is real for all m;

ii. The slope dG / dm is always positive;

iii. At the origin oi =0 the function G( m) has either a pole or a zero;

iv. An poles and zeros are simple ; i.e., there are no multiple-order poles;
v. The characteristic roots and the zeros alternate, i.e., there is always a zero

between two poles;

vi. The system function G( m) is defined by the location of its characteristic roots

(system-poles) and its zeros except for a multiplying constant (static response
factor) G(O) .

The transfer impedance and related transfer characteristics do not involve com­
pletely the above mentioned function properties. Mostly , the conditions ii and v
are not satisfied with regard to transfer characteristics of lossless systems.

Thevenin's Theorem
Mechanical circuits which contain one or more vibration sources (exciters or ac­
tive elements) having an output terminal to a load for the energy supply can be
represented by an ideal constant-force generator in parallel with an equivalent
mechanical impedance connected to the load , Fig. 4.16a .

The Thevenin equivalent network may be determined by applying output­
terminal constraints, introduced in 2.2.3. Referring the behaviour of 2-terminal
sources, in particular the complete mechanical source derived from the 2-port pa­
rameter method in 2.2.5, first the output point will be restrained (no motion per­
mitted at the output) . The output force being transmitted by the attachment point
of the equipment becomes the blocked force f. oe (the subscript "oc" emphasizes

open-circuit condition for measurement, i.e., f.oe is an open-circuit force phasor).

Secondly, the output point is released from load connection to move freely (no
force exerted at the output) , and the output velocity becomes the free velocity !:!se
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Fig. 4.16. Equivalent arrangements of mechanical circuits . a Thevenin' s equivalent net­
work; b Norton's equivalent network

(the subscript "sc" emphasizes short-circuit condition, i.e., !Zsc is a closed-circuit

velocity phasor). Then the internal impedance (parallel impedance) ~i can be de­

termined by the phasor ratio of the measured quantities foe and !Zsc '

~i =foc/!Zsc (4.57a).

A great advantage is derived from this equivalent system in that attention is fo­
cused on the characteri stics of a system at its output point and not on its individual
components. By this the system response can be predicted with ease when the load
attached to the output is varied.

Norton's Theorem
Mechanical circuits which contain vibration sources having an output connection
to components can be represented alternatively by an ideal constant-velocity gen­
erator in series with an equivalent (mechanical) mobility connected to the compo­
nents, Fig. 4.16b.

The Norton equivalent network is corollary (dual) to Thevenin 's equivalent
system expressed in terms of the measured quantities defined above as well as in
terms of the inverse phasor ratio defining the internal mobility (series mobility)
y .
-I

(4.57b).

Thus, the identity proves true
~i.L = I (4.57c) .

The same advantages in lumped-system analysis exist as with Thevenin's par­
allel representation . The equivalent system to be preferred depends upon the type
of structure . For experim ental investigations of the equivalent dynamic character­
istics it is usually easier to measure the free velocity than the blocked force on
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large heavy structures, while the converse is advisable for light structures . In any
case, one representation is easily derived from the other corresponding with the
identity ofEq. (4.57c).

The various mechanical circuit theorems treated above in short can be used as
an aid in network modelling of mechanical systems and in response calculation. In
particular, the problem of adding a remote system to an already complex system
will be simplified. Thevenin' s equivalent is useful when the separate subsystem is
to be inserted in a branch where the force is already known. Norton 's equivalent is
advantageous when the subsystem is to be bridged between two points whose
relative velocity is already known.

The mechan ical circuit theorems are the analogues of the well-known theorems
employed in the analysis of electric circuits, see 2.2.5, Fig. 2.17.

Generalized Kirchhoff's Laws
The interconnective relationships between the power variables at common nodes
(or vertices) , and around closed paths (loops) are the fundamental laws of general
network analysis . A large number of sets of network equations can be derived by
use of force interconnection requirement and of motion interconnection require­
ment. If the system is not too large ingenious elimination among these equations
will result in the desired system relationships , 4.1.2.

The combination of generalized Kirchhoff's laws with the concept of mechani­
cal mobility, or dynamic compliance, respectively , provides an effective method
for lumped-system analysis also including complicated mechanical circuits . The
dynamic characteristic of a composite system is commonly defined as a response
phasor ratio (phasor mobility or phasor dynamic compliance) respecting sinusoi­
dal steady-state analysis only. Furthermore, the transform analysis method re­
places response phasor ratios by response transform quotients. Relating the Fou­
rier transform pairs of power variables structural configurations are represented by
a frequency-re sponse characteristic in generalized form adapted to vibration data
analysis implying transient and random vibrations, 4.2.1.

In lumped-system analysis the velocities throughout a mechanical circuit are
commonly evaluated by applying the statement of dynamic equilibrium
(d' Alembert's principle) at each junction (node) where the velocity is unknown.
Once the velocities are determined , any desired forces can be evaluated. On the
base of this principle (force interconnection requirement) the equations ofmotions
as well as the system transform relationships in terms of response phasor ratios
(or, possibly in terms of response transform quotients) may be determined by in­
spection of the network diagram, 2.3.4.

Basic Tool. According to the interconnective force relationships at any node (or
vertex) phasor force equations can be stated. Then the phasor forces are expressed
in terms of relative phasor velocities and phasor impedances of the components.
Finally, the desired system relationship will be described by a set of vertex (or
node) equations in phasor notation. When the phasor equations are written so that
the unknown velocities form columns, the equations are in the proper form for a
determinant solution for any of the unknowns.
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By elimination the unknown velocity referred to a single point in a system the
phasor ratio of force and velocity at the same or different points in the system is
formed resulting in an overall mechanical impedance of the structure . Since the
dynamic behaviour will be represented by a force-displacement relationship the
same directly deriving procedure can be performed expressing motion in terms of
relative phasor displacements . Thus, the related characteristic given by an overall
dynamic stiffness of the structure will be deduced being more convenient in ma­
chinery .

Suited to a lot of problems in vibrations the above-outlined vertex transform
analysis (method of node forces) will be sufficient for deducing dynamic charac­
teristics of any structure consisting of mechanical (phasor) sources and basic ele­
ments. Singly it may be indispensable for deriving the desired system relationship
that phasor velocity equations around enough closed loops are stated which in­
clude each element at least once. Then the phasor velocities are expressed in terms
of phasor forces and phasor mobilities of the components. Finally , the desired
system relationship will be described by a set of circuit (or loop) equations in
phasor notation . The phasor equations are solved for the unknown forces. Thus,
the inverse phasor ratio of force and velocity, likewise of displacement, referred to
the same or different points in the system result in an overall (mechanical) mobil­
ity, or, respectively, in an overall dynamic compliance of the structure.

The above-sketched circuit transform analysis (method of loop velocities) pro­
vides a second set of phasor equations . Together with the first one the two con­
straints cover dual interconnective relations.

For large-scale systems the process of deriving as sets of network phasor equa­
tions as overall dynamic characteristics will be further systematized by use of ma­
trix methods to establish fundam ental transform relationships, entering the com­
ponent characteristics of different types of elements in other matrices, and finally
obtaining independent sets of vertex and circuit equations by an automatic se­
quence of matrix operations, 4.1.2.

For developing the techn iques of large-scale network analysis in detail one
should be referred to more specialized literature, [II] , [16], [17], [52], [60], [75],
[90] .

4.2.5
Graphical Methods to Mechanical System Design.
Selecting Vibratory Specifications by Polar Diagrams

The presentation of mobility type data makes use of different graphs to suit this
presentation to various applications. The advantages of logarithmic transformation
for portraying frequency responses separately by their magnitude (gain) and phase
versus log frequency have been marked out in 3.2.11. In addition to the favoured
logarithmic plotting (Bode design) there is sometimes advantage in using alterna­
tive plotting methods .

The polar representation of the frequen cy-response characteristic plots the real
and imaginary components as functions of frequency . It is also desirable to plot
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the data in polar coordinates (Nyquist plot) as illustrated in 4.2.3. The polar dia­
gram the measured data of which may be enhanced by a circle-fitting procedure
plays a part in extracting modal parameters from test data, [18] .

In the following it will be shown that polar diagrams are also suited to judge
the vibratory effects on machine structures in operations. For the investigation of
the dynamic characteristic of structural members or parts the concept of mechani­
cal impedance and that of dynamic stiffness will equally be applied. The concepts
express equivalent definitions for different kinds of inverse frequency response
functions, as treated in 4.2 .1. Which of both concepts claims actual usefulness
depends on the nature of problems to be fixed by the investigator. Whereas in vi­
bration analysis impedance is well acquainted with yielding the principal modes
of mechanical circuits, dynamic stiffness gives evidence on frequency-depending
effects associated with the vibratory resistance against deformation.

For that reason the polar diagram of dynamic stiffness is appropriate for ex­
tracting performance criteria which are fundamental to mechanical system design,
in that case for proportioning of main structures like bedplates or frames of the
machine to permissible values of deformation owing to forced oscillation or self­
excited vibration. Performance criteria in terms of calculated or estimated pa­
rameter values related to composite dynamic characteristics are called frequency­
response specifications.

(4.59a,b,c)

(4.58a,b,c),
k ·1

k- j2S1]
k . (_1]2)

Vibratory Specifications by Varying Forcing Frequency
Using the vector representation of response phasor ratios the related overall fre­
quency response is plotted in terms of polar coordinates by the locus of the com­
posite characteristics K(jm), Eq. (4.25a), in the dynamic stiffness plane, or

~(jm) , Eq. (4.27a), in the mechanical impedance plane , respectively, Fig. 4.17.

The steady-state interrelation of mechanical components is illustrated by the
contributions made by the individual phasor ratios combining
the phasor stiffnesses K, ofthe elementary components
f(jm = 0) «; k KkXkk

f(jm = jmo) = Kc jcm KkXkc
f(jm = 00) Km -mm2 KkXkm

or, respectively,
the phasor impedances Zj of the elementary components

Z(jm=O) z, -jk/m ZOXkk Jmk (-j/1])

~(jm = jmo) = Z; c = ZOXkc = Jmk 2s
Z(jm = 00) = Zm = jmm = ZoXkm = Jmk j1]

with the composite characteristic of the parallel-connected structure defined by
the complex ratio of phasors taken at the same point in the system.

The response ratio of phasors is associated to a single forcing (angular) fre­
quency, and thus assigned to one point of frequency locus plot. The magnitude of
the phasor ratio (amplitude ratio) being identical with the length of the localized
vector (radius vector) is related to the excitation force by multiplying constant
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Fig. 4.17. Polar plots for parallel-connected basic elements. a Polar diagram of dynamic
stiffness K(jw) ; b polar diagram of mechanical impedance ~(jw)

phasors . Thereupon, the amplitude of the external force to be app lied to the sys­
tem follows from the phasor relation com bining
the modulus ofdynamic stiffness and displacement amplitude

It lro =li E lro =IK(jw)II~1 (4.30a),

or, respectively,
the modulus ofmechanical impedance and velocity amplitude

Itl ro =liE L= 1~(jw) I I~ 1 (4.31a).

Spe cifying Driving Force Amplitude. If forcing frequency is allowe d to vary
within the frequency range of interest the change of excitation force in amplitude
can be gathered by the frequency locus plot followi ng the change of radius vector
in length.

One problem of system desig n in the freque ncy domai n arises from predicting
performance criteria fo r a vibration generator imparting its vibratio ns whether to
a fatig ue testing machine or to oscillatory devices in process engi neering. Sup-
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posing a simple harmonic vibration the phasor relations, Eqs. (4.30a), (4.3Ia),

permit to determine "dependent on frequency" the driving force amplitude F
which is to be required for generating or maintaining a presupposed constant op­
erating motion S , or v (constant-amplitude motion) .

The question gets an extension for estimating the driving force amplitude F
being necessary to produce forces transmitted through the individual components,

i; Ed ' Em' For this purpose the phasor ratio polygon proves useful, so that the

component ratios are combined with the known amplitude of operating displace­
ment S , or velocity v, respectively, both of them being constant multipliers.

Specifying Significant System Parameters. For illustrating frequency effects on
the dynamic characteristic of a structure the normalizing transformation of fre­
quency responses is used being a convenient data reduction method suited to
graphical interpretation in the frequency domain . For that, the response ratios of
phasors are adjusted in variable and scale to be performed in the following steps
as shown in 3.2.11. The static response factors are identical with
the stiffness of the spring

1 K(O) 1= «, = k (4.60),

or, respectively,
the indicial (or characteristic) mechanical impedance

1Zdwo )1=1 z; (wo )1=Zo =1.J;k1 (4.61).

Then, the forcing (angular) frequency is transformed into the new variable fre­
quency ratio, Eq. (3.39). Finally , the frequency responses varying with the new
variable will be related to the multiplying constants, Eqs. (4.60), (4.61), and result
in "nondimensional response ratios" of phasors designated
the normalized dynamic stiffness of the structure

K(j~) F( ' )
---,-_{j)--,o,-,- =Xdj'1) = X kk + Xkc + Xkm =1+ j2S'1-'12 =- ~J '1 (462)

K
k

- ~k .,

or, respectively,
the normalized mechanical impedance of the structure

z(· to )- Jm; ~ . _ ~ ~ ~ · 1 . fU'1)
Z

=Xk(J'1) -Xkk+Xkc+Xkm=-J-+2s+J'1= ~ r7" (4.63).
o - '1 ~",mk

The number of parameters is diminished by combining element parameters to
system parameters, so that the new functions, Eqs. (4.62), (4.63), are expressed in
terms of only two quantities , the frequency ratio 1] and the damping ratio S. Thus,
the effect of the performance criterion for related energy dissipation Son the fre­
quency-response characteristics will be represented graphically in the normalized
form by a set (or family) of adjusted (data-reduced) polar plots for various
amounts of damping as 1] varies over some driving frequency range, Fig. 4.18.

The steady-state interrelation of mechanical components is illustrated by the
polygon of "non-dimensional phasor ratios" resulting from
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Fig. 4.18. Adjusted polar plots for parallel-connected basic elements. a Polar diagram of
normalized dynamic stiffness X k (j 17) ; b polar diagram of normalized dynamic mechani­
cal impedance X k (j 17)

the normalized element stijfnesses
Kk/Kk = X kk I

Kc/Kk = X kc j2(17

Km/Kk = X km -172

or, respectively,
the normalized element impedances

z, /z; Xkk - j/ 17

z, / Zo = Xkc = 2(

Zm/ZO = X km = j1J

(4 .64a,b,c),

(4.65a,b,c).

Response Data Plotting. Polar plots (Nyquist plots) of normalized dynamic stiffness are shown
in Fig. B.S of the Appendix B.

The requirement to be satisfied by vibration machines may be reverse to that
one just treated. For this frequently applied driving operations the external force
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(4.66a,b,c),

11k

(- j/(2S7J))lk
(-1/7J2)/k

acting on the structure remains constant with frequency . The significant response
to be expressed by a pertinent motion variable commonly results in the displace­
ment at the same point in the structure, on occasion its velocity. Thus, forming the
inverse phasor ratios corresponding to Eqs. (4.25a), (4.27a), displacement and
velocity response phasors are related to the locus of the composite characteristic
~Uw) , Eq. (4.33a) , in the dynamic compliance plane, or rUw), Eq. (4.35a) , in

the (mechanical) mobility plane, respectively, Fig. 4.19.
The steady-state interrelation of mechanical components is illustrated by the

reciprocals of individual phasor ratios combining
the phasor compliances Cj ofthe elementary components
Qjw=O) Ck Ilk = CkYkk

Qjw = wo) c, -j/(cw) CkYkc

Qjw = 00) Cm -1/(mw2
) CkYkm

jlm.Q

arc.Q

a

C Re.Q
C

k
.Q(jw) C

c Ck .Q(jw)

~ w increasing m

C(
. ~ §(w)
JW,= -;;-- F

jlm'y

arc j'

Y(. ) ~(w)_ JW =-A-
F
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---=L"'_~

~k 'y(jw)
m

\ Re'y
\

b
Fig. 4.19. Polar plots for parallel-connected basic elements. a Polar diagram of dynamic
compliance ~Uw) ; b polar diagram of (mechanical) mobility rUw)
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or, respectively,
the phasor mobilities Y; of the elementary components

ruw=O) Yk jw/k YOYkk j1J/..rmk
ruw =jwo) = 1';; 1/c = YoYke = (1/(2S))/..rmk (4.67a,b,c)

ruw=oo) = Ym -j/(mw) = YOYkm (-j/1J)/..rmk
with the composite characteristic of the parallel-connected structure due to Eqs.
(4.41), (4.43). The magnitude of the inverse phasor ratio (inverse amplitude ratio)
being identical with the length of the localized vector is related to the motion re­
sponse by multiplying constant phasors. Thereupon, the amplitude of the resultant
motion response of the system follows from the phasor relation combining
the modulus ofdynamic compliance and force amplitude

lilw =IQjw)II£:1 (4.33c),

or, respectively,
the modulus ofmechanical mobility and force amplitude

1~lw =!I(jw)II£:1
Specifying Operating Motion Amplitude. The change of motion response in am­
plitude can be gathered by the frequency response locus plot following the change
of radius vector in length .

In the following the problem of system design in the frequency domain arises
from predicting performance criteria for a vibration machine being the reverse of
the preceding driving characteristics . Supposing a simple harmonic vibration the
phasor relations, Eq. (4.33c), (4.34c), permit to determine "dependent on fre­
quency" the operating motion amplitude S , or U, which can be realized by ap­

plying a presupposed constant driving force F (constant-amplitude force). The
question can be extended for estimating the amplitudes of occuring forces trans-

A A A

mitted through the individual components Es ' Ed ' Em' due to an acting driving

force t .For this purpose the inverse phasor ratio polygon proves useful, so that
the reduced component ratios are combined with the known driving force ampli-

tude related to the dynamic compliance of the spring fr/Ck , or related to the im­

pedance of the spring fr/Zk ' respectively, both of them being constant multipli­
ers.

Response Data Plotting. Polar plots (Nyquist plots) of normalized dynamic compliance are
shown in Fig. B.I of the Appendix B.

Vibratory Specifications by Element Parameter Estimation
For illustrating the varying effect of lumped parameters (discrete elements spring,
mass, and damper) on the dynamic behaviour of structures in the frequency do­
main it is not suitable to carry out a normalizing transformation of frequency re­
sponses . Instead of using a polar representation adjusted in variable and scale the
polar plotting of frequency-response functions will be realized without any data
reduction (direct response locus).
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For mechanical engineering applications machine structures have to meet the
demand that deformations caused by oscillations must be limited. Diminishing of
translational amplitude is an improvement of mechanical system's forced response
which corresponds in the frequency domain to an increase in dynamic stiffness
magnitude. Thus, the problem of vibrations-reduced structural design is focused
on the proper performance criterion formed by the modulus of dynamic stiffness
of machine structures.

Adopting the fundamental configuration of basic elements in parallel to a first
approach the overall frequency response is plotted by the locus of the composite
characteristic K(jm) , Eq. (4.25a). Supposing a sinusoidal vibration the varying

parameter effect on the overall dynamic stiffness can be estimated for any fixed
forcing (angular) frequency mf . Assigning definite lumped parameter values to

frequency locus plots a correspondence will be set up between points and curves
in the Nyquist plane, Fig. 4.20.

An enlargement of both the spring constant k and the damping coefficient c
causes an increase in dynamic stiffness , whereas a growth of mass m involves a
decrease in dynamic stiffness. This varying parameter tendency proves true with
reference to forcing frequencies ranging below resonance .

Since the driving frequency passes the region of resonance an estimation of
dynamic stiffness values must imply the complete frequency range of interest.
Related to the fundamental configuration being subjected directly to an external
force or excited indirectly via a spring the figured frequency locus plot is a proper
tool for estimating lumped parameters in the sense of an increase in dynamic stiff­
ness, Fig. 4.21.

Thus, a respective change of storage element parameters k, m made above
resonance causes an effect which acts on the frequency characteristic of the
structure yet in contrary sense to that below resonance . It should be noticed that a
change ofdissipator element parameter c merely effects without reversing its ten­
dency when passing through resonance.

Furthermore, it is obvious that resonance is associated with the radius vector's
smallest length, 3.2.11. The minimum of modulus coincident with the smallest
dynamic stiffness magnitude indicates a significant frequency. Being referred to
the deformation amplitude this singular frequency is designated displacement
resonance frequency mr , Eq. (3.39a) , the value of which is some what lower than

natural frequency mo, Eq. (3.6a).

Design Specifications for Vibration-reduced Structures
Summarizing frequency and parameter effects on the frequency characteristic of
the structure it can be stated that the required increase in dynamic stiffness will be
obtained under conditions of minor resonant vibration by

slowing up forcing frequency to f ;

- enlarging the spring constant (stiffness) k;
- diminishing the mass m;
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Fig . 4.20. Polar diagrams of dynamic stiffness K(j (J) ) due to varied lumped parameters of
basic elements in parallel. a Change of spring constant (stiffness) k; b change of mass m;
c change of linear damping coefficient c

or, under conditions of major resonant vibration by

- speeding up forcing frequency (J) f ;

- decreasing the spring constant k;
- enlarging the mass m;

and within all regions including resonance by

- enlarging the damping coefficient c.

The dema nd for reducing vibrations in structura l desig n can be satisfied by a
variation of element parameters suited for limiting vibratio nal deformations, thus
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Fig. 4.21. Polar diagram of dynamic stiffness K(jm) with improvement of frequency
response by a lumped parameter estimation tending towards reduced vibrations below and
above resonance

resulting in a stiff lightweight construction since operating below resonance, or in
a resilient heavyweight construction above reson ance. Stiffening of structures is
often mistaken for an increase in dynamic stiffness in a general sense, though this
holds true only for operational regions below resonance. On the other hand an
intensifying of energy dissipation takes effect on all the regions especially around
resonance range.

The stated performance criteria f or vibration-reduced structures can be inter­
preted physically as a systematic approach based on utilizing the tuning property
of mechanical systems. The recommended variation of forcing frequency and/or
estimation of storage element parameters is equivalent to separating driving and
natural frequency from one another, an equalizing procedure being called detun­
ing (or tun ing off resonance) by analogy to electrical communication systems.
Compared to detuning a strengthening of the damping effect signifies a smoothing
down procedure against sharpness of resonance, termed flat tuning .

Various attempts to modify characteristic modes and to intensify energy dissi­
pation have been started in structural engineering . The improvements achieved in
mechanical system ' s frequency response include auxiliary mass attachments,
flexible foundations (or supports), frictional damping of joints restrained by force
as well as dynamic vibration absorbers and detuners (auxiliary vibratory systems ),
[79] to [86] .

Review of Vibration-reduced Design. Historically, the requirements for a stiff lightweight con­
struction have been satisfied by developing weight-saving steelframe structures of machines.
Attending at first to plate frames sectional areas could be enlarged by use of sets of plates. Due
to an increase in resistance to elongation mainly longitudinal vibrations have been reduced.
Thereupon, design of machine structurespassed from plate frame into hollow-frame construc­
tions. Exemplified by a ribbed girder forming a zig-zag framework of web plates high flexural
stiffness could be realized. This box-type construction was introduced by E. Peters, [90], for
machine tool bed plates, Fig. 4.22.
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IbMMdl
Fig. 4.22. Welded hollow-girder zigzag rib-strengthened after E. Peters

To enlarge resistance to torsion lathe beds in tubular frame construction after W. Mobius
exemplified by various embodiments have been well tried in working, [95].

Forming cellular structures by use of strutbraced sections after C. Krug, [91], (92), a con­
siderable increase in resistance to bending and twisting was realized which permitted to reduce
lateral and torsional vibrations , e.g., on grinding machine structures .

Subassemblies of steel parts are joint together thus forming body frameworks composed by
screw connections . Using the frictional damping effect in force-locking (bolted) joints a wide­
band increase in dynamic stiffness could be obtained as pointed out by O. Kienzle , and exten­
sively summarized by K. Bobek, A. 'Heij1, and F. Schmidt, [93]. Comparing steel frame struc­
tures being welded and integral cast pieces the typifying damping ratios could be specified by
measuring: welded steel structures s= 0,07 ;

cast-iron structures S= 0,03 .
Changing from solid to liquid friction stiffness and damping characteristics of joints have

been varied utilizing the squeeze film effect. Although , dependency of stiffness as of roughness
between friction surfaces behave in a reverse sense. A strengthening of restraining force as well
as a refinement of surface finish involve indeed an increase in stiffness bat a decrease in
damping as being traced out by M. Week, and G. Petuelli , (94).

The requirement for a resilient heavy-weight construction can be satisfied preferably by
cast-iron structures . However, it is not expedient to enlarge wall thickness of delicate castings
for a growth in weight. It will rather be appropriate to couple auxiliary masses on machine
structures or to support them by a flexible foundation .

At any rate, cast-iron structures involve a considerable variability in box-type design. Brae­
ings or ribbings can be arranged along the path of lines of force (or flux of force), so that an
increase in form stability efficiently can be realized . To intensify dissipation of energy the core
sand can be leaved in the cavities of castings . Furthermore , the filling up of hollow-frame con­
structions with polymer concrete, resin-bound and of low shrinkage, proved to be very effec­
tive, [96], [97].

Due to either rubbing or squeezing action between fully supporting solid or liquid friction
surfaces whether appertaining to bolted joints or to slideways of moved traverses the frequency
response characteristic will be improved by dissipative energy effects . For that reason the rub­
bing effect has been intensified by use of additional frictional dampers . Damped absorbers may
consist of bundles of sheet-metal laminations with intermediate plastic layers after K. Loewen­
feld, [82], or of high-damping polymers with low functional relationship of temperature after
H.W. Lysen, [80], [98].

Control System Design for Vibration-reduced Structures
In the last several decades the performance of structures has been improved by the
use of closed-loop systems, 2.1.2. By means of control system design the desired
performance of a dynamic system can be achieved through a feedback compensa­
tion whereby actuators apply forces to a structure based on the structure response
as measured by sensors. In contrast , the above-mentioned attempts improve the
performance of passive element configurations (mechanical plants) through the
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use of materials or devices enhancing the damping and stiffness characteristics of
a structure. This has turned out to be suited for reducing both emissions of oscil­
lation (active vibration isolation) and imissions of oscillation and shock (passive
vibration and shock isolation), as well as for diminishing undue strain in structural
members, [99]. However, the demands made on machinery, structures, and dy­
namic systems are continuously increasing, so that the dynamic performance re­
quirements are always rising. Consequently, the control of structures has been
introduced to complete the methods of improving system responses.

Motion Control. For industrial applications engineering systems are frequently designed to
perform, with high precision, a specified task or follow a desired motion. Controlled hydraulic
actuators are used for the automatic position control of machine tools and robots at which the
damping effect will be adjusted by feedback compensation instead of intensifying energy dissi­
pation .

Active Damping. Reducing vibrations by control has been realized at first for weight-saving
constructions in aircraft and power craft, such as rotor blades of helicopters or road vehicle
suspension systems, [100], [101]. High-speed hydraulic actuators basing on electrodynamic
moving coil principle have been applied to milling spindle mountings for reducing self-excited
vibration , [102]. By use of solid-state actuators on the base of piezoelectric and magnetostric­
tive effects microactuators of high dynamics have been developed for active damping purposes.
They already have proved in operation , e.g., at fast moving, lightweight robotic arms, or at the
center point, Le., close by the area of tool action at plain grinding machines, [103], [104].

Control of Structures . This topic blending together various disciplines , namely analytical dy­
namics, structural dynamics and modern control theory for a dynamic system design, combined,
may be referred to more specialized literature for advanced studies , [30], [31].

Vibratory Specification by System Parameter Estimation
Taking advantage of normalization by use of adjusted (data-reduced) polar plots
the improvement of passive system's response can be achieved by varying the
performance criterion for dissipation as given by the significant system parameter
damping ratio t;.

Example 4.2: Reduced Vibration due to Frictional Damping. The frame of a machine (engine
bed) has the following measured parameters:

spring constan t (stiffness) k = 220 N / um

damping ratio t; = 0,008 .

Following Eq. (4.62) the dynamic stiffness magnitude

!K(jwf)1 =k ·IXk (j 1]I)1=k · 1~r-(l-_-1]1-2 )-2 -+-(2-(1]-1)-21 (4.68a)

is defined, resulting for 1] = 1 in

IKI1 =k· 2t; =1,6.2,2 .10-1 =3,52N/Ilm (4.68b)

thus being at resonance only 1I63th of (static) stiffness!
Some additional form of damping may be introduced into the structure. By utilizing rubbing

action between mounted friction surfaces dissipative performance will be varied resulting in a
considerable improvement on the system parameter

damping ratio t; = 0,05 .
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By that, the dynamic stiffness magnitude

IKI 2 =k- 2( =1· 2,2·10 =22N/~m (4.68c)

now amounts at resonance to 1I10th of stiffness. Especially around resonance range any inten­
sifying of damping effect becomes effective for an increase in dynamic stiffness.

4.2.6
Some Exercises in Transform Analysis Methods. Applying Dynamic
Compliance Techniques

For proving their suitability the previously defined frequency-response character­
istics will be applied to systems or structures with two or more than two degrees
of freedom . Though references are usually made to impedance and mobility
analysis techniques the related characteristics basing on the concept of dynamic
stiffness and dynamic compliance will be favoured as proving a powerful tool in
general lumped-system analysis . Stiffness and compliance is more convenient for
problems the phasor relations of which between forces and relative motion vari­
ables should be expressed in terms of displacements instead of velocities.

Otherwise, the equivalent definitions of various kinds of response ratios of pha­
sors can be converted into one another with ease as outlined in 4.2.3.

Forming equivalent characteristics of repeated structures (or sections) in paral­
lel as in series a directly deriving procedure for simplification of networks (basic
tool of network diagram reduction) will be applied as treated in 4.2.4.

Taking pattern from linear graph theory a basic form of cut-set analysis will be
additionally introduced being suited to mechanical network diagrams with junc­
tions illustrated by rods (shafts). This procedure may be considered as an ad­
vanced device for simplification of networks. To gain composite dynamic char­
acteristics the interconnective vertex relationship between forces will be modified
by the concept of supernodes. Defining the rod as a complex node, termed a su­
pernode after R.E. Scott, [104], and dividing it into parts , equations for any set of
nodes can be found by simply adding together the vertex equations for the appro­
priate nodes . These equations are called cutset equations , [52], [60].

Example 4.3: Force Transducer in Fatigue Testing. One of the basic requirements for force­
and motion-measurement transducers is that transducer mass should be small so as to avoid
dynamic loading of the structure under test. In addition, the requirement for force transducers
implies selecting stiffness of the transducer and its components so that no resonances involving
this stiffness occur within the frequency range of interest.

Though covering mobility measurements, [18], the above-mentioned basic definitions also
come true in materials testing measurements , [105].

The model system of an uniaxial fatigue testing machine, reduced to a two-degree -of­
freedom-system undergoing a harmonic motion that provides excitation at the point 2, consists

of a mechanical source acting by a displacement of the amplitude uon a configuration of two
subsystems, Fig. 4.23.

The mechanical source being modelled by an ideal constant-displacement generator is ap­
proximately embodied by the equipment of a crank wheel drive which belongs to direct-drive
mechanical vibration generator systems. Hydraulic vibration generator systems are also appro­
priate for generating vibration in terms of an exciting displacement since the actuator operates
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Fig. 4.23. Fatigue testing system. a Schematic diagram of test equipment and force­
measuring system; b mechanical network with junctions as rods

in a stroke-controlled system. Undergoing this condition of testing the pressure driven piston is
assumed to be controlled by its position relative to the cylinder.

The two-element subsystem connecting a spring and a damper in parallel describes the test
piece (or specimen) by the model of a structural component in conformity with the Voigt­
Kelvin model characterizing visco-elastic behaviour of materials .

Furthermore, the three-element subsystem of basic elements in parallel forms an auxiliary
oscillator representing the force transducer (load cell) . Its location within the test equipment is
important for the avoidance of errors caused by mass loading. Frequently, the force transducer
is fitted between the test piece (at resting grip) and the load frame with a maximum stiffness ,
thus implying the requirement for a rigid frame (braced girder or trussing) of a high lowest
natural frequency (fundamental frequency).

The subsystems are specified by the component parameters:

ks Test piece stiffness kT Force transducer itiffness

<s Damping coefficient of test piece cT Damping coefficient of force transducer

(perhaps to be neglected)

ms Mass of the test piece and partly

of the equipment
(moving gripping device ,
drive mechanism)

mT Mass of the force transducer and load

train components
(load cell and loading fittings , i.e.,
effective end mass)
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U(J) Sinusoidal displacement applied

to the test piece

Fs Load response of the test piece

(at resting grip); in short: true force
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s Sinusoidal displacement of transducer

attachment (at resting grip)

FT Load indicated by the force

measuring-system
(at force indicator) ; in short: indicated force .

The problem of force measurement reduces to gathering the unknown true force Fs from the

known indicated force FT ' A conclusion from the output measurement point 0 back to the

input measurement point 1 can be drawn only by knowledge of the related frequency response
of the force transducer. Contrary to problems of the type analysis or synthesis the problems
arising in instrumentation, measurement, or calibration are of that type, that a transmission
system is used to record the response, from which the excitation can be deduced .

Taking the resulting forces at the different points I and 2 in the same measuring system the

desired transfer frequency-response characteristic at ill = ill f is defined as

(4.69a)

forming a non-dimensional phasor ratio which is designated the force transmissibility .
Rod 0: Loading frame as reference frame; subsystem in parallel yields the phasor relation

between indicated force and common (absolute) displacement

FT = (Kk T + K CT )~ (4.70)

by adding the dynamic stiffnesses of the force transducer components incident to the connect­
ing rod O.

Rod J: Being considered as a supernode rod 1 if cut at station k = 1 would separate the
mechanical network into two parts. Forming a set of two nodes phasor relations can be rewrit­
ten for appropriate sets of element branches which terminate in one of the different sections of
the rod.

Cut station k = 1:
Left section in parallel gives a phasor relation between forces summing at the left face of the
cross section, identical with true force, and common relative displacement

Fs =(Kks +Kcs )(~-n (4.71)

by adding the dynamic stiffnesses of the test piece components incident at the connecting left
part of rod I.

Right section in parallel leads to an equivalent phasor relation between forces summing at
the right face of the cross section and (absolute) displacement common to all of the force trans­
ducer components.

The two parts of the rod will be joint due to the equilibrium condition relating internal
forces at the opposite faces of a cross section

(4.72).

Thus, by inspecting the elements that join the rod sections the circuit relationship between rela­
tive displacements follows from a cutset equation

A = (Kk s +Kcs)(~-,D= (Kk T +KCT +KmT)~=-A+l (4.73a)

Kk T + KCT + KmT
~ - ~ = s (4.73b).«; + Kcs
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Replacing the force phasors in Eq. (4.69a) by Eqs. (4.70), (4.71» , and substituting Eq. (4.73b)
for the phasor relation between relative displacements
the force transmissibility

Kk T + KCT + Km T _ kT + jCTcor - mTCO~

Kk T + KCT - kT + jCTCOr
(4.69b)

(4.74).

is specified by the complex ratio of concerned component dynamic stiffnesses. For simplifica­
tion the dynamic stiffness of the damper associated with the force transducer may be neglected

as <r :::: °,and the amplitude ratio of indicated and true force is reduced to

the magnitude ofundamped force transmissibility

I
. Ifrsl kT-mTCO~ 2

GOl(JCOdl=-I~1= k =1-'71
FT T

The relative dynamic accuracy error

s = IfrTI-lfrsl= IG-1(J' CO )1- 1=---.!ZL < 1%

I
~ I 01 r 2 =Fs 1- '71

(4.75a)

being expressed as a percentage of the true force amplitude Fs represents a performance crite­

rion which is used for selecting a force transducer welI suited to equipment characteristics. To
smother the effect of (uncompensated) inertia laoadings on the force-measuring system the
estimation of storage element parameters kT , mT relevant to a transducer selection must be

suited to meet the requirement for a tuning off resonance. Admitting a dynamic accuracy error
that amounts at most 1 percent, Eq. (4.75a), the detuning is sufficiently performed due to the
parameter varying effect since

'71 ~ 0,1 or CUo ~ 10 CUf (4.75b).

That means, the practicable range of test frequency co r is limited by a force transducer the

natural frequency CO 0 of which is at least as high as the IO-fold of that test frequency CO r
being applied as maximum frequency.

Mass Cancellation. Though transducer selection and designing of the attachment hardware
have a high priority in force measurements the detuning criterion, Eq. (4.75b), may become
unrealizable. Then, a processing of transducer signals will be applied that includes a compen­
sation procedure, commonly known as mass cancellation. The acceleration signal at the point
of load response (resting grip) is obtained and multiplied, either in an analogue circuit or digi­
talIy, by the total effective mass to be compensated . This force signal is subtracted from the
force transducer signal to obtain the net load response (true force) acting on the force­
measuring system under test.

Electronic mass cancelIation cannot compensate for rotational inertia loadings; it can only
compensate for translational inertia loadings at the driving point and in the direction of the
excitation. AlI other spurious forces can only be minimized by choosing transducers of low
inertia, (106), (107), (108).

Example 4.4: Torsional Vibrations of Rotors on a Flexible Shaft. To analyse the torsional
vibration of crankshafts of steam engines, combustion engines, rotor systems of turbines and
generators a considerable body of literature shows solutions to those problems, [53) to [57).
Supplementary to welI known matrix methods, [58), [59), dynamic stiffness and compliance
analysis techniques are applied. It will be demonstrated that frequency-response characteristics



www.manaraa.com

4.2 Frequency-response Characterists 253

can be directly derived be reducing a translational mechanical network which is equivalent to a
lumped torsional system.

The model system of a single shaft rotating in frictionless bearings with three discs rigidly
attached to it, reduced to a three-degree-of-freedom torsional system undergoing a sinusoidal
steady-state vibration, consists of a mechanical source acting by a harmonic torque of the am-

plitude 73 on the point 3. It marks the end of a configuration of repeated sections of massless

flexible shafts and rigid masses, Fig. 4.24.
The mechanical source being modelled by an ideal constant-torque generator is approxi­

mately embodied by the drive shaft transmitting a forcing torque from a single engine or motor.
The subsystems are specified by the component parameters:

J, Moments of inertia of the discs

k j Torsional stiffnesses of the shafts

rpj Angular displacements of the discs (torsional oscillations).

Taking the torque excitation and the resulting angular displacement at the same point 3 in the

torsional system the desired direct frequency-response characteristic at m = to r is

rp
C33 (jmr ) = -:::3 (4.76a)
- T

-3

forming a phasor ratio which is designated the driving-point dynamic compliance.
To gain the dynamic characteristic of the composite system the cut-set simplification of

networks proves useful again. Considering the rods as supernodes the mechanical network will
be subdivided into different sections each of them joining an appropriate set of element
branches. Thus, phasor relations of fundamental configurations can be applied to find the over­
all dynamic compliance of the structure by successive reduction . For that reason, all the sec-

a

J,
/

®

b
Fig. 4.24. Torsional system. a Schematic diagram of a three-rotor system; b mechanical
network with junctions as rods



www.manaraa.com

(4.77b) .

(4.78c)

(4.78d) .

(4.79a),

254 4 Transform Analysis Methods of Vibrating Systems

tions are numbered in an increasing order from left to right with the dynamic charac teristic at
each cut station also progressing to the right.
Rod 0: Reference frame (inertia l reference system)
Rod 1: Cut station k = 1
The left section (incident at rod 1) the torque through the rotati ng mass J ) is related to the

compo nent dynamic stiffness

7'1 = K) iJl = K J I iJl (4.77a) .

Forming the corresponding phasor ratio (torque-displacement relation) the component dynamic

stiffness of the rotating mass J( equalling that one at the starting cut station k = 1

T1 2
-~- = K ] = K J1 = -JJ(J) r
{OI

Rod 2: Cut station k =2
At the connecting sections in series the torque is common through the torsional spring k I inci-

dent at rod 1 and 2 (vertex postulate)

7'2 = 7'1 = K1 (k =l ) iJl = «; iJ 2 (4.78a),
- (k =2) - - l -

and the angular displacements sum up across the element k] (circuit postulate)

iJ =iJ + l1iJ (4.78b) .
- 2 -I - 2

The two cutset equations, Eqs. (4.78a,b), constituting a pair of postulates is used to form the
corresponding phasor ratios (displacement-torque relations), thus illustrating that the dynamic
compliances assigned to the joi nted sections add

(O2 iJ] l1iJ2 1
i:
2

= i:
2

- + i:
2

= K2
- (k =2) - (k =2) -(k=2) - (k =2)

resulting by inversion in the dynamic stiffness at the cut station k = 2

kIJI(J) ~
K2 2
-(k=2) kl - J1(J) r

Rod 2: Cut station k = 3
At the connecting sections in parallel the angular displacement is common across the torsional
spring k l and the rotating mass J2 incident at rod 2 (circuit postulate)

~ ~

{O 2 (k=3) ={O 2 (k=2)

and the torques sum up through the elements k l , J2 (vertex postulate)

7'2 = 7'2 + 7'i. = 7'2 + KJ2 iJ 2 (4.79b).
- - (k=2) - - ( k=2) -

Using the deduced cutset equations (pair of postulat es) to form correspo nding phasor ratios
(torque-dis placement relations) the dynamic stiffnesses assigned to the jointed sections add

~ i:T2 -1.(k=2) Ti. 1;:- =-~- + ;:- = K2 =K2 + KJ =KJ + (4.79c)
{O2 {O 2 (O2 - -(k=2) 2 2 _ 1- + _ 1-
- - - KJ 1 K k l

resulting by conversion in the dynamic stiffness at the cut station k = 3

K
2

= - kIJJ(J) ~ + J2(J) ~ (k~ - JI (J)~ ) (4.79d).
- kl - J 1(J)r
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Rod 3: Cut station k = 4
At the connecting sections in series the torque is common through the torsional spring k2 inci­

dent at rod 3 and 4 (vertex postulate)

T3 = T2 = K 2 iJ2 = Kk /),.iJ3 (4.80a)
-(k~4) _ _ 2 _ ._

and the angular displacements sum up across the element k2 (circuit postulate)

iJ = iJ + /),.iJ (4.80b) .
-3 -2 -3

Using the lately deduced cutset equations to form corresponding phasor ratios (displacem ent­
torque relations) the dynamic compliances assigned to the jointed sections add

iJ3 iJ2 /),.iJ3 1 1 1 1".=--= A - + A =--=-+-=-+ (4.80c)
T T T K3 K2 «; «; K 1
..l(k=4) ..l( k=4) ..l(k=4) -(k=4) - 2 2 J2 + 1 1- +­

KJI Kk l

resulting by inversion in the dynamic stiffness at the cut station k = 4

k2 [k1J1mi + J 2mi (k( - J1mi)]

A A

fP3 (k ~4) = fP3

and the torques sum up through the elements k4 ' J3 (vertex postulate)

T3 =T3 + T; =T3 + KJ iJ3
-(k=4) _ -(k=4) 3 _

(4.81a),

(4.81b).

Using the lately deduced cutset equations to form corresponding phasor ratios (torque­
displacement relations) the dynamic stiffnesses assigned to the jointed sections add

(4.81c) .
fP3

i: A

T3 -.l( k=4) T;
A +-A-=K3=K3 +K J =KJ +----~----
fP3 fP3 -(k=4) 3 3 _1_+ "--_ _

«, K 1
2 Iz + I I- - +--

Kk l KJ 2

By joining at the final cut station the two parts of rod 3 all sections are connected. The con­
secutive set of cutset equation s yields the overall dynamic characteristic. A structure of regu­
larly alternating parallel and series connections is represented in the frequency domain by a
continued-fraction expan sion composed of element stiffnesses and compliances

(4.76b).

+-------=-- ----
C

k 2
+-----'--- ­

K J2
+ 1

CkJ +1jKJ ,

11 11 11 11 11
== --+--+--+--+--

IKJ3 ICk 2 IKJ2 ICk l IKJ1

fP3
C33 (jm f) = --=- = ---------::;------
- T3 K

J3
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The consecut ive quotients of the division and reciprocation process will be resolved to an uni­
form fraction. finally resulting by inversion in
the driving-point compliance of the torsional system

. k}J ,(j) ;-( k , - J I(j); )( k 2 - J 2(j); )
c33 (Jco r) [ 2 2 2 ] 2 [ 2 2 2 ](k ,-J}{j)r Xk 2-J2{j) r )-k}J}{j)r J 3{j)r+ k2 (k,-J,{j)r )J2{j)r+k ,J,{j)r

(4.76c).
Taking resulting response and applied excitation at different points on a structure transfer

compliances can be deduced by successive reduction multiplying continued fractions of sub­
systems. Assuming two-way energy transmission as a rule Maxwell's reciprocity theorem may
be applied . Lumped-system analysis thus will be simplified by removing the exciter from i to i ,
or vice versa. 4.2.4.
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5 The Flow of Power and Energy in Systems
(Energy Transactions)

To power and energy interactions is not given one' s full attention in many appli­
cations of systems modelling though being an essential matter of systematic ap­
proach to the design of complex systems.

Energy and power alone are the fundamental dynamic variables, the ultimate
currency of all physical interaction and transaction . This statement being already
emphasized by Henry M. Paynter gave a decisive impulse to describe energy
bonding as a particular type of functional connectedness, and finally to develop
the bond graph approach as a complete and formal discipline, 2.5, [22], [23].

To impart the understanding and insight of the transformation and flow of en­
ergy an introduction in brevity to energetics is given following some of the fun­
damental conclusions on this matter performed by Paynter, [22].

Thereupon, it will be propitious to bring into focus two specific types of rela­
tions representing the dynamic behaviour on an energetic basis.

Variables and Parameters of Energetic Systems
Energetic Systems. Within the scope of a general treatment of system-to-system
interact ions it is of particular interest for systems engineering to focus the atten­
tion on a class of physical systems called energetic systems. Several attempts have
been made to describe the energy transactions which can occur across the bounda­
ries of dynamic systems.

Review of Energy Concept. Historically, J.e. Maxwell's use of field concepts for light and
electricity resulted in a theoretical structure appropriate not only for analysing electromagnetic
radiation phenomena but also for revealing the energetic aspect of fields of all types. J.H.
Poynting extended this basic conception in physics to the consideration of energy transport in
an electrical network. This was continued by CiP, Steinmetz for developing a regimented theory
for practical analysis and design of electrical circuits, and also by O. Heaviside for generalizing
the statement of energy continuity. Concerned with the identity of energy O. Lodge implant ed
the concept of energy-matter conservation in the structure of the theory of energetics.

In parallel with the outlined development was that of the classical theory of thermodynam­
ics.

Poynting, Heaviside, and Lodge stated that the transformation of energy is always accompa­
nied by a transfer, thus presupposing the ether as a substance to permeate all space. For pre-sent
purposes energy exists in and of itsself, requiring no material vessel in which to be stored or
transported, [22).

Noncausal Description. Energy transactions may be defined by a pair of vari­
ables which together are a measure of the flow rate of energy equally termed the
power across the interface between system and environment.
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One of the variables is an extensive factor in that its magnitude depends on the
extent of the portion of the system entering into energy transaction. The other
variable is an intensive factor being a function only of the field in which the sys­
tem resides. If the two variables are properly chosen, that means, if they are a pair
of rate variables (intens ity or power variables ) in the sense of 1.2.2, their product
will yield the instantaneous power exchanged. The factoring of power into two
components is fundamental in mechanics (power =force· velocity) and thermo­
dynamics (power = pressure· rate of volume change).

For the modelling process it is convenient to think of the intensive variable as
an effo rt, e(t ), and the extensive variable as a flow , fit) , so that their product will
yield the instantaneous power, Pet), Eq. (2.91) , 2.5.

Being associated with the overall-energy state E the system enter s into energy
transactions with its environment at a number of localized region s on its boundary
surface. Thus , in the case of the noncausal energy interconnection, the quantities e

i

and /; are the external variables of the systems .
An interconnection diagram for energetic systems, which may be a reticulated

bond diagram, imparts an understanding of the transformation and flow of energy
within the system and assists in the isolation of the essential energy interactions
with the environment.

Causal Description. However, for a more detailed synthesis and preliminary
analysis the noncausal energetic interconnection is usually not adequate and must
be transformed into the bilateral signal flow reticulation . The description of the
system is then completed by conceptually substituting for each element a black
box for which the input-output functional dependency is specified.

Reticulation can be defined as the process by which a system is endowed with
structure. Viewing the elements of a system simply as systems of lower order,
called subsystems, the interactions between two elements are considered to be of
the same class as those which may occur between two systems. Summarily, all
possible interactions occuring within the dynamic system or across its boundaries
may, in fact, be looked upon as system-to-system interactions.

A segregation of n inputs Xi from the n outputs Yi can be imagined involving a
conceptual deformation of the system such that all the inputs enter at one face
while all the outputs leave from the opposite face.

The quantities Xi are referred to as the components of the input vector x, and
the quantities Y

i
as the components of the output vector y, where in matrix nota­

tion the vectors are denoted by small (lower case) bold-faced letters. Though be­
ing convenient to arrange the components in columns there is much advantage in

spacing by writing the column vectors horizontally (in braces) x = {XI '· '. ,Xn } ,

and y = {r; ,...,~ } .For each input-output pair (Xi' Y) there corresponds a power

component P = Xi Yi•

Passing on to algebraic operations for matrices one of the two column vectors

must be rewritten in terms of a row vector (in brackets), i.e., x T = [ Xl ' . . . ' X n],
thus performing the transposition of the input vector x denoted with the additional
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mark (T as letter superscript) x T , frequently reduced to the symbol with a typo­
graphical sign (prime) x' . The matrix multiplication of the two real vectors yields
the scalar product (dot product) summing up to a (Ixl) matrix, i.e., to a real
number being identical with
the total power exchanged

(5.la).

Performing the transposition of a product (x'y)' = y'x an alternative form of the

scalar product is found. Hence, the total power can be rewritten in two equivalent
forms of matrix notation

P=x'y=y'x (5.1 b) .

Being a matrix of only one element the total power is a scalar defined by the
property to be equal with its transpose, Eq . (5.lb) .

In conformity with the principle of the continuity of energy the energy flow rate or power is
invariant under a coordinate transformation . Supposing a linear transformation (or mapping) of

X into y caused by the system it its interesting to note , that the pair of vectors (x and its image

y) does not go over into new coordinates X,Y by corresponding relation s (by a cogredient

transformation), but according to the opposite relations, i.e., by a contragredient transformation

X = Tx Y= T'y (5.2a),
where T is the transform matrix assumed to be nonsingular. Applying the transposition of a

product, and the inverse transformation premultiplying by (T'r', respectively, to the equa­

tions of vector transformation, Eq. (5.2a)

x' = (TX)' = x'T' (TTl Y= y (5.2b),

the insertion of the obtained transpose and inverse, Eq. (5.2b), into Eq. (5.la) yields the power
in the new coordinate frame

P= x'y = x'T'(T'r' y = x'y (5.lc).

The system is represented in particular by coefficient matrices (m x n matrices) which perform
the linear transformation (mapping) of vector spaces either in original or in new coordinates.
Those two assumed coefficient matrices related to the nonsingular T by Eq. (5.2a) are said to be
congruent . The congruence transformation is put to good use in the transformation of quadratic
forms, 5.1.2.

The functional dependency
y ='II (x) (5.3a)

is of a most general form such that the entire history of x is scanned to yield a pre­
sent value of y . Therefore, it is applicable to the analysis of all processes in which
the system might be involved, and in particular to transition processes from one
steady-state condition to another.

Finally the system is conceptually replaced by a module which performs the
operation on the input vector x being required to yield up the output vector y .

The generalized functional", contains the intrinsic properties of the system in
the form of a set ofparameters.
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A verification of the functional dependency, Eq. (5.3a), can be carried out by scanning the
input vector x(t - r) for 0 < t: < OC! and yield ing up a value for the output vector Y(t). A

particular form frequently used is
the vector-to-scalar transformation

Y(t) =\jJ [x(t)] (5.3b).
Cons idering an ideal element the energy stored in this element, E(t), is yielded by
the integral formula from 0 to <Xi

(5.4) ,

(5.3c).

'"
Y(t) = E(t) = f P(t - r) d r

o
eo

= fe(t - T). f(t - r) d r
o

wherein it might be identified

X =[Xt,X2 ] = [e,f] .
For the steady-state analysis, a simpler static functional II> is applicable, yield­

ing the present value of y corresponding to a present value of x, thus performing

a static functional transformation
y =II> (x)

Hence, for a bilateral signal flow reticulation it becomes obvious that the vari­
ables of the system are the vectors x and y, or, more precisely, their respective

components.

Equilibrium Power Transfer. Sign for power as causality for effort and flow
variables has already been outlined in the context of conventions for intercon­
nected multiports, 2.5.2.

Conceiving one of two participating systems as the supplier and the other as the
recipient of power the conventions above should be completed by the presumption
of a definite intersection between demand and supply effort-flow characteristics.
This implies the existence of a point of stable equilibrium operation. Modifica­
tions in characteristics to be performed by load or source matching for achieving a
stable power transfer thus will be omitted.

The Steady State of Energetic Systems.
The analysis of steady state plays a dominant role in providing an overall under­
standing of the behaviour of energetic systems. An insight into steady -state be­
haviour of a system forms the basis upon which the analysis of its stability and
transient behaviour may be founded. The stability of a system may be evaluated
by observing the result of small excursions about a steady operating point.
Moreover, a transient condition in a stable system is the means by which its oper­
ating state alters from one steady condition to another.

The two types ofsteady state are:

I. The static case, wherein the power flux is identically zero and all that is re­
quired is a statement of the distribution of internally stored energy .
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ii. The stationary case, wherein the power flux is a constant, at least in the mean,
and the system is in dynamic equilibrium with the internally stored energy. In
the case of strict stationarity the time derivates of the flows both internal and
external, vanish identically . A weaker condition is that of quasi-stationarity
wherein the time averages of the flows are zero, i.e., each of the flows is fluc­
tuating about some steady mean value.

Power Transactions in Vibrations
The analysis of physical systems on an energy basis is well approved in applica­
tions most of them being attached to circuits in electric power engineering.

The study of vibration is favourably engaged as in converting shock and vi­
bratory motion into proportional parameters of the experienced motion, as in pre­
venting or reducing unwanted vibrations ofstructures. Those two main subjects of
vibrations are associated with either the problem of measuring instruments (or
systems) or the problem of system analysis (or system identification). Conse­
quently , in vibration theory scarcely arises the need to deal with energy flux and
power flow.

However, vibration engineering also faces the claim of system design which
includes at least the want of power flow. In particular, this proves necessary for
generating desired vibrations being applied by way of the "vibration method" to a
variety of industrial processes or to testing procedures. For this purpose , (utility)
vibration machines engaged in various working operations are developed, as well
vibration testing equipments are in use, the power supply of which requires an
appropriate vibratory drive, [88], [123], to [125).

Thus, from the engineering viewpoint vibration theory should be occupied
likewise with the problem of system synthesis covering the demand for rating and
optimizing the driving power flow in machinery . In the following two attempts of
an energetic system approach to the mechanical system subjected to vibrations are
made . Both of the approaches related to power interactions between the power
supply and the engineering component base on the diagram representation by a
significant type of systematic diagram (interconnection diagram):

- One of them is concerned with the causal description of the generalized trans­
port process of energy in the two-port diagram (mechanical 2-port), treated in
5.1;
the other one deals with the phasor power concept basing on the acausal de­
scription of the network diagram (mechanical circuit), treated in 5.2.

By transforming time-dependent power transactions into the frequency domain
the spectral decomposition of power combined with the algebraic function of
complex power permits the insight into the steady-state behaviour of power and
energy flow in reticular systems.

Finally, the relationship of phasor power concept to the concepts ofmechanical
mobility or dynamic compliance (linear one-port dynamic characteristics) and its
usefulness for energetic system design will be demonstrated in 5.3.
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(5.3d).
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5.1
Power Transmission through Linear Two Ports
(Generalized Transport Process)

A 2-port may be conceived as a generalized transport process, i.e., a process by
which energy is transformed, transmitted, or transduced.

Besides the components of a communication system many common engineer­
ing components can be considered as a 2-port, and a power transmis sion device of
complex system structures can be looked upon as a string of2-ports , 2.2. and 2.6.

Two-po rt (or four-pole) representation combines the four terminals of a single
entity to terminal pairs which shall be designated generally as the upstream and
the downstream port, I and 2, being the only ones for which the device is to be
represented and investigated.

Description of Linear Two Ports
The behaviour will be characterized in terms of
the input power and the output power

~ (t) = e \ (t). 11 (t)

and therefore in terms of four variables:

el ,I I ,e2,/2'

Since at each port only one of these variables may be taken as an input , XI' X2, the
existing interaction indicates that the output variable at each port, YI as Y2, is func­
tionally determined by the input variables at both ports, XI and X2• Using the gen­
eral functional operators for the 2-port ip a '" b , the functional dependency in the

time domain is:

YI(t) ="' a[Xj(t), X 2(t )]

Y2(t) ="'b[X j(t),X2 (t )]

Standard Forms of Matrices. A linear 2-port can be described by 4-pole equa­
tions which may be summarized to a single causal statement in matrix form. The
physically realizable particularizations favourably associated with the electrical
field are termed the four causal matrices Z, Y, H, G. Their relations to the possi­
ble connections of two ports have been outlined in 2.2.2.

In the following the most significant standard form will be taken up which re­
lates the power states at the opposite terminals through the transmission matrix A,
respectively , Eqs. (2.24) , (2.27) , 2.2.1. While the A and B matrices are clearly
noncausal they have the pecul iar advantage that the overall coupled transmission
matrix for two 2-ports in cascade (or tandem) may be obtained by direct matrix
multiplication. By this, the transmission of power variables is described for the
resultant two-terminal-pair network .

Transfer Characteristics of 2.port Networks. In systems modelling using matrix
technique to descr ibe the overall behaviour of two-port networks the arising
problems are commonly placed in the three categories, [22]:
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1. The transfer problem : The effort or flow at the output terminal is required in
response to effort and flow at the input terminal , with ideal terminations gen­
erally assumed at the output terminal .

n . The transmission problem: The power state at one port is looked for in terms
of the power state at the second port with:
- unrestricted terminal conditions, or
- terminal impedance specified.

iii. The insertion problem: The effect of inserting a two port into a system in place
of an ideal coupler, e.g., a rigid link in mechanics, is sought. Typically these
problems are "filtering" and "protection" situations, where performance is
measured in terms of the change in power, effort, or flow after insertion from
that occuring before insertion.

The transmission characteristics of 2-port networks are specified for the general
case by four independent 2-port parameters. These may be determined in terms of
the elements of the transmission (or chain) matrix being tabulated in terms of con­
verted causal matrices , [10], [22].

5.1.1
The Transmission Problem of Two-port Networks. Unrestricted
Terminal Conditions

Causally Reticulated Two Port (signalfour pole)
Using a transfer function block diagram with two inputs and two outputs the in­
terpretation of a multivariable system can be placed on the two-port diagram ,
2.2.6. By this, the generic 2-port in matrix form implying conventional reference
directions will be replaced by the causal form ofa signaI4-pole, Fig. 5.1 .

The signal 4-pole being a subsystem configuration of considerable usefulness
in system engineering consists of l-port components each of which represents one
of the four 2-port parameters.

,.- --'-'- '- '- ....-.-._._._ ._._ . ...,

a

x; , iYr
, + ,
, ,

CD' ~1 F,2 I®
I I

I I

X;l I I Yrl
I I

b
Fig. 5.1. Basic structures of a signal 4-pole. a Block diagram in the canonical configura­
tion;b in the fieldconfiguration
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In electrical network theory an equivalent circuit arrangement is given by the lattice network
(or "bridge-net"). The frequency-response behaviour of this 4-element structure is described by
4 impedances, 2 of which are referred to as the "series arms", the other ones as the "cross
arms". The corresponding 2-port parameters, also called the general circuit parameters, are
expressed in terms of related impedances of the "arms", and which are determined by subject­
ing the lattice equivalent circuit of the 2-port to constraints. The equivalent definitions of the 2­
port parameters pertaining to the kind of related phasor quantities are then short-circuit current
ratio, open-circuit transfer impedance, short-circuit transfer admittance, and open-circuit volt­
age ratio, [16], [52], [601 .

Though two equivalent block diagram configurations of the signal 4-pole in
terms of direct and transfer frequency characteristics are realizable, Fig. 5.1a,b, it
is more convenient to represent the causally reticulated 2-port by the field con­
figuration, Fig. 5.1b. The segregation of the two inputs from the two outputs will
be maintained by a conceptual deformation such that the two inputs XI' XII at
port 1 are conceived as entering in opposite direction, accordingly the two outputs
YI , y., as leaving from port 2 in opposite direction. This emphasizes energetic in­
teractions with causality by an effort -flow couple, said a pair of conjugate vari­
ables.

Linear Transformation of Vector Spaces
In the following the power state will be expressed separately by the output quanti­
ties in response to both of the input quantities, thus being appropriate to the trans­
fer problem, 5.1.

If the general functional operators for the 2-port, \J.' aand \J.' b ' Eqs. (5.3d), can

be assumed linear over the practical range of operation, then a most important and
powerful signification subsists in the frequency domain . This is manifested in the
reduction of the functional relationship between the (transforms of the) variables
to a pair oflinear algebraic equations

lJ =\J.'alXIXn]= FllX 1 + F12Xn
Yn =\J.'b[X,Xn]= F2IX, + F22Xn

or, in matrix notation

[NJ=[~: ~~][;:J (5.5b),

wherein one might identify the input vector and the output vector

x=[X"Xn] Y=[>I,>Id (5.6).

Arranging them as column vectors the relationships will be reduced to a single
vector equation

Y = Fx (5.7a)

where F is the inverse transmission matrix of the signal4-pole.
By this standard form of matrix a direct spatial correspondence to the ports

themselves is established relating the power states, P2 and PI' at the opposite ter­
minals of the linear 2-port.

Considering the stationary case of steady-state the forcing functions applied
are restricted to the special type of sinusoidal excitations.
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Variables and 2-port parameters may be pointed out in complex quantities, so
that in general the 2-port parameters are complex system parameters (functional
operators) formed by the ratios of two phasors. In particular, at any given driving
frequency 4 suitable measurements will suffice to determine the parameter set of 4
phasor ratios (or complexors), and thus describe the sinusoidal steady-state re­
sponses of the output variable pair.

If the two-terminal network is passive recipro cal one constraining relation im­
plies that there are only three independent 2-po rt parameters ; now, three meas­
urements will suffice to define the system.

The 4 "general circuit parameters" thus signify

two direct (or drivin g-point) fr equency-response functions: F,I' F22;
two transfer frequency-response fun ction s: F'2' F2,·

Implying boundary conditions and specifying output/input phasor ratios the 4 fre­
quency characteristics are defined with the corresponding designations as force
transmissibility, velocity transmissibility, furthermore as free impedance, blocked
admittance (or mobility), respectively, [II], [17], [18].

5.1.2
The Transmission Problem related to Complex Power.
Generalized Quadratic Forms

By a linear transformation of the vector space x and y , performed by Eq. (5.7a),
the power transaction is treated on the base of factoring power into two compo­
nents. Indeed , the input/output relation of separate components represents the ef­
f ort-flo w characteristic yet being an impli cit f orm of the proper power state.

The power is carried across the system boundary by transmission links (shafts, ducts , elec­
trical conductors , wavegu ides, etc.). Respecting the power flow through an area of restricted
extent the power state at any energy port is rather indicated in terms of an effo rt-flow produ ct
than in terms of the corresponding effort-flow couple, i.e., the energy coupling by a transmis­
sion link is physically represented by the scalar quantit y power replacing the vectorial quanti ­
ties of the individual conjug ate variables, such as force and velocity. Hence, problems of the
previously mentioned implicit type are involved with finding y as a function of x , whereas

those in the sequel deal with finding P, as a function of PI' Properly speaking, the requirement of
effort or flow at the leaving port in response to those at the entering port is appropriate to the
category of transfer problems, but the demand for power representation at both ends applies es­
pecially to the category of transmission problems, as defined in 5.1, [22).

Instead of the customary effort-flow character istic a proper energy flow char­
acteristi c will be presented in the following which expresses the power state in
terms of an explicit form appropriate to the transmission problem, 5.1.

For this reason respecting sinusoidal steady state the power transaction of the
2-port may be defined by the transm ission ratio ofphasor produ cts

Sy Y; Y1
As = S = :::-;-::: (5.8)
- x XU X 1
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expressing the relation of output power to input power in terms of effort-flow
products. It is convenient to define the root-mean-square (r.m.s. value) as the
modulus of phasors (additionally marked by a tilde as an overscript) specifying
the individual variables as complex quantities representing sinusoidal quantities of
the same frequency. Taking at each energy port the product of an effort phasor

XI' or II' and the conjugate of a flow phasor X;I ' or I;I' respectively, Fig.

5.lb, the energy state at both ends is represented by the complex input power §.X'

and by the complex output power §'y .

Scalar Transformation of Power States
In the following it will be shown that the complex output power §.y can be deter-

mined directly from the input vector x via element connections of the (inverse)
transmission matrix F. Since indeed this standard form of a noncausal matrix can
be assumed to be known, an explicit relationship will be derived following the
transformation of the vector space x into y, Eq. (5.7a), yet being adequate to per­

form a scalar transformation of the power state §.X into §.y, [108]. The two ele­

ments (r.m.s.-value components) assigned to each port are complex numbers thus
forming complex vectors, called the input vector :!' and the output vector y. In-

serting those vectors into Eq. (5.7a), the corresponding equation is rewritten as
y=F~ (5.7b).

This vector equation can be expanded as a linear combination of the components

X i of the input vector by use of a matrix notation introducing the (2x 1) subma­

trices or column vectors 1m of F

(5.6c).

Being represented by a (2-rowed) square matrix the transmission matrix F of a

signal 4-pole can be written in terms of its (I x2) submatrices or row vectors If

F=[Fem]=[~: ~~]=[;:] (5.9).

of the output vector are obtained from the

fth row vector If and the column vector :!
Consequently, the components .L
scalar product (dot product) of the

at the input

~ 1~ [ l[XI
]YI=f~=FlI ,F12 X

n

- 2 _ [ l[XI]Yn =f ~ = F21, F22 X
n

(5. lOa).
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To obtain the complex conjugate E;, of one of the output components, e.g., Ell '
the conjugate and transpose of the appertainin g dot product / 2:!: , must be formed

- . ( 2- ) ' ( 2- )· _•• [ _. -.][F2•1 ]
Yn = /:!: = /:!: =:!: / 2 = X I X u F

2

•

2

Modified Hermitian Form. Thus, the complex output power results from multi­
plying the conjugate dot product, Eq. (5. lOb), and the corresponding dot product ,
Eq. (5 . lOa), together. By this "composed transformation" the input vector :!:is

transformed into a scalar form being similar, not equal to an expression designated
in the theory of matrices as the Hermitian form. This standard form can be inter­
preted as the complex generalization from the real quadrati c form. Compared to
the above-mentioned standard specification the given expression denoted by §.y

represents

the modified Hermitian form in the two complex variables X I ' X II

- • ....., _ . . 1- -;» ......

Sy = >II >I = !. /2/ !. = !. L!. (5.lla).

(5.12a).

Though being a scalar the value of the form §.yis not a real but a complex num­

ber. This implies a corresponding square matrix omitting in general symmetric
properties.

Matrix ofthe Form L. The so-called dyadic product of the conjugate transpose of
2' •

the row vector / , being equal to the column vector / 2 ' and the row vec-

tor f' yields a (2x2) matrix of the rank 2, called

the coefficient matrix of the farm

• I [ F2·] ] [ ] [F;IFII
L =1 21 = • F lI , F12 = •

Fn FnF1I

This square matrix is complex but not Hermitian providing all its elements, Lem'

are complex numbers (phasor ratio connectives). Thus, symmetric properties of L
holding true for complex coefficients can not be assumed.

Standard Form ofthe Matrix L Except for the trivial case of equal row vectors

1 2 =/ 1

equivalent to

F21 = FII Fi 2 = F22 (5.l3a)
the square matrix, Eq. (5.12a), is a Hermitian matrix. This corresponds to a signal 4-pole char­

acterized by a transmission matrix F said to be singular because the determinant of the square
matrix is zero

det F = FI 1Fn - F21FI I = 0

Then the matrix of the form , Eq. (5.12a), has the Hermit ian property

L· =L

(5. 13b).

(5.l3 c)
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being the complex generalization from a real symmetric matrix . This matrix is in addition posi­
tive (semi-) definite since the output complex power holds in particular a Hermitian farm being
a real number.

Following from

- * * \ - -*- 1-1 2
:!./I/ :!.=~Y,= Y, ~O

for all X i or due to the decomposition of the Hermitian matrix into the sum of dyadic vector

products

///' +/;/2 =F'F
and regardin g the square of the norm

-* * _ -*- 1_12 1-12 1-12 1- 12:!. F F:!. =~ ~ =~ =Y, + YIT =2 Y1

1Y;1
2 =tlil 2

~O

(5.14a),

(5.14b)

for all Xi' Ii ' the power state is represented in this exceptional case by an active output

power which consists in the square of the magnitude of the output component equallin g half the
square norm of the output vector, and which must be non-neg ative for passive 2-port networks.

The Hermitian matrix L as being singular a positive (semi-) defin ite form is existent which

may become zero also for ! '# 0 .

Generalized Form of the Matrix L. For the general signal 4-pole the complex
matrix of the form, Eq. (5.12a), can be written as the sum of a Hermitian matrix U
and a skew-Hermitian matrix V

L=U+V (5.12b)
where

U=t(L+L*)
V=t(L-L*)

(5.15a).

(5.15b).

Complex Power at the Downstream Port
By matrix operations including quadratic forms it has been demonstrated that the
complex output power ~y can be expressed in terms of connected elements , Fern '
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(5. 16b)

(5.16c).
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of the tran smission matrix F combined with the r.m.s.value components X i of the

input vector :!:' where the energetic connectedness of the causally reticulated 2­

port is de scribed by the modified Hermitian form rewritten in full notation

Sy = r; r;
_ _. _ _ [ - * - * ] [ F;I FI I F2*1 F12 ] [i\ ]
- £ L~ - XI' Xu * * -

- - F22Fll F22F12 Xu

_ [ - * - * ] [F2*1 Fll i\ + F2*1 F12 Xu]
- XI , Xu. - * -

- - F22Fll XI + F22F12 XII
- -

= X; (F2*1 FI I X I + F2'1F12 Xu)

+ X~ (F2*2Fll XI + F2*2 F12 Xu) = :~~ ~~ LemX; X m

Real and imaginary parts of the complex power are transacting components being
significant for the insight into stationary flow of energy through a 2-port. It will
be shown that the decomposition of the complex power reduces the introduced
modified Hermitian form to corresponding standard forms involving either even
or odd properties of symmetry.

Active Power (average power)
The real part of the complex power which describes its active (or in-phase) com­
ponent, called the active power, leaving port 2

Py = Re[Sy ] = t(Sy + S~ ) (5.16a)

results du e to

Re[Sy ]=t(;(L~+~*L'~)

=t{~* (u + V)~ + ~* (u - V)~} =~*u ~

in a standard form, termed the Hermitianform

Py = Re[r; rI]=x'U~=°fO±2 UemX; Xm
- - e ; ( m e l ---

The matrix of the form U is the Hermitian term of the (complex) quadratic matrix L, Eqs.
(5.15a,b,c), thus the elements of the principal diagonal are real, whereas the elements of the
secondary diagonal are complex conjugate.

In addition U is positive definite, that means non-zero for every choice of :!: as the active

output power P; is a Hermitian form which has the value of a real number being non-negative
for passive 2-port networks. U is nonsingular, thus the corresponding Hermitian form is prop­
erly positive definite, the value of which only becomes zero for:!: = O.
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Reactive Power
The imaginary part of the complex power which describes its reactive (or
quadrature) component, called
the reactive power, leaving port 2

Qy =hn[Sy]=~(Sy -S~) (5.17a)
- 2J - -

accordingly results due to

Im[Sy]= ij(;tLg:-;tL·~) (5.17b)

in a complementary standard form, termed
the skew-Hermitian fo rm

jQy =jhn[r; rd =x·V~ ="f"f Vim X; Xm (5.17c).
i =1 m=1

The matrix of the form V is the skew-Hermitian term of the (complex) quadratic matrix L, Eqs.
(5.l5a,b,c), thus the elements of the principal diagonal are pure imaginary, whereas the ele­

ments of the secondary diagonal are equal except for the real parts.

V is not positive definite, the imaginary reactive output power jQy is a skew-Hermitian

form having the value of a pure imaginary number or zero for every choice of ~ .

Transformation of power States in Summary
By using Eq. (5.11b) an efficient relationship is available to perform the transfor­
mation of the scalar power state ~x into ~y with respect to the stationary case

within the types of steady state.
Finally , the energetic system is conceptually replaced by a module which per­

forms the operation on the complex input power §.Xbeing required to yield up the

complex output power ~Y . This module previously conceived as a static func­

tional can be explicitely defined by the matrix of the form L being a modified
Hermitian matrix, a generalized expre ssion holding for an energy storing and dis­
sipating system subjected to a harmonic exci tation.

The matrix L contains the intrinsic properties of the system concern ing ener­
getic interactions at the ports in form of a set of composite parameters, L im ' being

related to the 2-port parameters, Fim , of the known transmission matrix F , Eq.

(5.9). The composite parameters, Lim ' are complex elements (functional opera­

tors) each of them representing a phasor ratio (or frequency characteristic) multi­
plied by a respective conjugate. Thus , the complex elements, L im' shortly termed

phasor ratio connectives, are signi ficant for the frequency behaviour of stationary
energy flow through a linear 2-port.

5.1.3
The Power Transmission Factor. Generalized Transmission Ratio

Previously it has been demonstrated how to find the output power P2 as a function
of the input power PI due to matrix operations using the complex generalization of
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quadratic forms with reference to the sinusoidal steady state. Finally, the system
could be conceptually replaced by the known matrix of the form L (corresponding
to the transmission matrix F) which performs the operation on the given input
vector:!: being required to yield up the complex output power §.y. Though being

of considerable interest the performed scalar transformation of the power
state §.X into §.ycovers only one aspect of the transmission problem engaged in the

flow of energy.
In particular with respect to system synthesis another aspect of the problem

arises which looks for valuing energetic systems by a transmission characteristic
which makes evident the varying effects on power being transmitted through. For
this purpose an explicit relationship must be found relating the complex power
which leaves to that one which enters the causally reticulated 2-port. As a result
the transmission factor of the complex power can be defined involving the fre­
quency characteristic of power transmission . This relationship is suited to illus­
trate frequency and 2-port parameter effects on the dynamic power flow behav­
iour (frequency-domain specifications).

Starting from the transmission ratio of phasor products, Eq. (5.8), 5.1.2, matrix
operations will be applied returning to quadratic forms.

Scalar Transformation of Power State at the Input Port
In comparison with the complex output power §.y expressed in terms of a scalar

form, Eqs. (5.lla,b), an adequate form must be found to represent the complex
input power §.X in matrix notation.

A (2-rowed) diagonal matrix with elements in the principal diagonal being all
unity is called a unit matrix I and can be written in terms of its (l x2) submatrices

or row vectors (unit vectors) e'

1= [Iem] = [;: ] (5.18).

Consequently, the components X i of the input vector are obtained from the scalar

product (dot product) of the £th row vector e' and the column vector F of the in­

put

The complex conjugate i;I is formed by

~. (2 ~ ) ' (2 -)'~' [-' ~'][O]X n = e ~ = e ~ =~e2= X1Xn I

(5.19a).

(5.l9b).
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Modified Quadratic Form. Thus, the complex input power results from multi­
plying the conjugate dot product, Eq. (5.19b), and the corresponding dot product,
Eq. (5.l9a), together. By this, the input vector~ is transformed into a scalar form

being a generalization from the real quadratic form. Compared to this standard
specification the given expression denoted by §.X represents

the modified quadratic form in the two complex variables X I' X II

"""'J t ""- ......,. 1""" ...... * ......,
Sx =XIIXr =~ eze ~=~ E~ (5.20a).

(5.22c)

(5.23a),

(5.23b),

Though being a scalar the value of the form §.X is a complex number, and the

correspondent coefficient matrix omits symmetric properties.

Matrix of the Form E. The dyadic product of the transpose of the row vector

e
2'

, being equal to the column vector e2 ' and the row vector e1yields a (2x2) ma­

trix of the rank I, called
the coefficient matrix ofthe form

E = e 2e! =[~] [1,0] =[~ ~] = [Elm] (5.2Ia).

This square matrix is real but not symmetric.

Standard Form ofthe Matrix E. Except for the trivial case of equal row vectors (unit vectors)

e 2 = e l

equivalent to

E=[~ ~] (5.22a)

the square matrix, Eq. (5.2Ia), is a symmetri c matrix with the property

E = E' (5.22b)
being in addition positive (semi-) definite since the input complex power holds in particular a
real quadrat ic f orm.

Following from

;( e l e ' ~ = X; XI = IXrl2 ~ 0

for all Xi or due to the decomposition of the symmetric unit matrix into the sum of dyadic

unit-vector products

ele
1

+e2 e 2 =/'/=/

in long hand

[~ ~]+[~ ~]=[~ ~]
and regarding the square of the norm

• • 2 I~ 12 1- 12 1- 12~ I'/~=~ ~ =I~I = XI + XII =2XI

IXI 1

2
= ~1~12 ~ 0

(5.23c)
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(5.24b).
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for all Xi ' the power state is represented in this exceptional case by an active input power

which consists in the square of the magnitude of the input component equalling half the square
norm of the input vector , and which entering the 2-port network cannot be negative .

Generalized Form of the Matrix E. For the general signal 4-pole the real matrix
of the form, Eq. (5.2Ia), can be written as the sum of a real symmetric matrix
Es and a real skew-symmetric matrix Ea

E=Es+Ea

e, =~(E+E')

e, = ~ ( E - E ' )

With respect to the dyadic product of the conjugate transpose of Eq. (5.2Ia)

E'=(e2el)'=ele2=[~][O,I]=[~~] (5.2Ic)

the following relations summing up or subtracting unit elements, hold true

Es = ~[~ ~] = [ESt m ]

e, =~[~ ~1]=[Ealm]

Complex Power at the Upstream Port
It has been demonstrated that the complex input power ~x can be expressed in

terms of a unit element I combined with the r.m.s. value components Xi of the

input vector! ' where the energetic connectedness is described by

the modified quadratic form rewritten in full notation

Sx = 1'; 1'1

(5.20b).

Active Power (average power)
The real part of the complex power, called the active power, entering port I

r; =Re[ Sx ] = ~(Sx +S;) (5.25a) ,
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results due to

R [S] I (- #E - - #E' -)e 2. ="2:!. :!. + :!. :!.

I {-#(E E)- -#(E )-} -# -="2:!. s+ a:!'+:!' s-Ea:!.=:!.Es:!.

in a standard form termed the real quadratic form

r; = Re[r; rI ] = x· e, ~ = DfDf Esfm x; Xm
-- f=Im=I ---

The matrix of the form Es is the symmetric term of the (real) quadratic matrix E, Eqs.

(5.24a,b), thus the principal diagonal elements are real whereas the secondary diagonal ele­
ments are equal.

Using real matrices and bases for the real and imaginary vectors Px can be expressed in the
alternative form of the trace of a product of real matrices. Introducing a real vector composed
of the geometric mean of the input components Px furthermore can be expressed by the square
of the appertaining vector norm, [120].

Reactive Power
The imaginary part of the complex power, called the reactive power, entering port
I

accordingly results due to

Im[Sx] = ij(tE~ -tE'~)

(5.26a) ,

(5.26b)

in a complementary standard form, termed the pure imaginary skew-quadratic
form

(5.26c) .

The matrix of the form Ea is the skew-symmetric term of the (real) quadratic matrix E , Eqs.

(5.24a,b), thus the principal diagonal elements are equal except for the opposite sign.
Introducing a real vector composed of the geometric mean of the input components Qx fur­

thermore can be expressed by the square of the appertaining vector norm, [120].

Generalized Transmission Ratio
The scalar transformation of power states representing the effort-flow product by
the complex power at both of the energy ports has been carried out. This now
permits to specify the explicit relationship covering the transmission problem of
valuing energetic systems as follows.

Modified Rayleigh Quotient. Thus, the explicit relationship results from replacing
the phasor products in the transmission ratio, Eq. (5.8), by the generalized quad­
ratic forms, Eqs. (5.11a), (5.20a) . By this, the input vector ~)s transformed into

scalar forms the quotient of which is similar, not equal to an expression desig­
nated in the theory of matrices as the Rayleigh quotient. This standard form is fit
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for the determination of eigenvalues , e.g., for estimating the lowest natural fre­
quency of lumped parameter systems (Rayleigh's principle). The quotient of
quadratic forms including their generalizations even in complex notation is com­
monly written in the particular form where the denominator is reduced to the
square of the vector norm of K.

Compared to this standard specification the given expression denoted
by :is represents

the modified Rayleigh quotient

Sy ~; ~ x'Lx ~
As = S =~, -;:: = =, == Rs[:!.l (5.27a),
- x XII XI X Ex

and in terms of connected elements Fern of the transmission matrix F rewritten in

full notation

[~, ~, ][0
XI ,XII I

(5.27b)

the energetic connectedness of the causally reticulated 2-port is indicated .
This quotient of generalized quadratic forms may be designated the transmis­

sion factor ofthe complex power of a 2-port .

Properties ofthe Rayleigh Quotient. Though being a quotient of scalars the value of :is is not

a real but a complex number. Except for the trivial case referred to both of the coefficient matri­

ces of the form, Land E, being Hermitian and real symmetric, respectivelY,:i s is reduced to a

real number.
Furthermore , :is is bounded, i.e., the denominator does not vanish by oneself, and the

modified quadratic form K'EK must be positive definite .

Hence, in the complex plane a proper region [L] is assigned to the matrix of the form L , the
so-called field ofvalues. The boundary of this field can be marked out by the maximal values of
the composite elements , Lern, of the matrix of the form, i.e., by the least upper bound of esti-

mated 2-port parameters, Fern' presupposing an input vector K being normalized . This corre­

sponds to a limited amount of power transmission performed by the signal 4-pole .
Finally, it may be taken profit from the Rayleigh quotient by use of the inherent relations to

the eigenvector X corresponding to its components A, eof L, and from its extreme value prop-

erties for solving eigenvalue problems, respectively , optimal value problems with reference to
power transmission by complex systems.

Real and imaginary parts of the transmission factor of the complex power are
significant for valuing the stationary flow of energy through a 2-port. It will be
shown that the decomposition of the power transmission factor reduces the intro­
duced generalized quadratic forms to corresponding standard forms involving
properties of even or odd symmetry.
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Active-power Transmission Factor
The real part of the complex power transmission factor which describes its active
(or in-phase) component, called
the active-power transmission factor

Py Re[~; ~L tu~ _
Ap= P = -. _ = -:::;-:: = Rp[~]

x Re[XnXI ] s es.
rewritten in full notation

[X-· X·l[F;lFil+Fi;F21
I ' n. •- - F22FIl + Fi2 F21

Ap =

(5.28b)

corresponds to the Rayleigh quotient Rp[~] .

This ratio relating the Hermitian form, Eq. (5.l6c), to the real quadratic form, Eq. (5.25c), is

a real positive number, and bounded, at which the matrices of the form U and Es ' Eqs.

(5.l5a,b), (5.24a,b), are positive definite , furthermore, Es is nonsingular.

The components X i of the complex input vector ~ can be represented by the alternative

of real matrices

XI =euI +jvI =[UI -V
I]=,\\

- VI UI

-. . [un vn] c .Xu=eun-Jvn= =Xn- -vn un
provided that the real and the imaginary unit vector are defined by the elementary matrices

e = [~ ~] j = [~ ~l] (5.29b).

Introducing now the real vector X m the components of which are formed by the geometric

mean of the real and the imaginary part of Xi

X =[Xm l ]=[I~I]
m X m 2 I~I

(5.30a)

-. -
it becomes obvious that the real part of the product X n X I corresponds to the scalar product

x~ X. =[I"u,un I, I"v,v lI I(I~~:::II] = ulun + VIVn = X~, + X ~, = Ix.I' (5JOb)

being equal to the square of the vector norm of X m

Re[X;1 XI] = Ixml
2

= (ulun +vlvn) (5.30c).
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(5.31),

(5.32a)

(5.32b).

(5.34a),

n=2 n=2

L: L: V(m X;Xm
(=1 m=1 --- (5.34b)

n=2 n=2

L: L: e, X;Xmrm__
(=1 m=1
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By use of the square norm of x m the equality to the standard form in the denomin ator, Eq.

(5.25c), holds

~ ' E - , I 12~ s ~ = X m X m = X m

and a normalized input vector may be introduced

_ X 1 [XI]
f = Ix-:' I= I~UIUU + VIVU I Xu

- '
- ' _ ~ _ 1 [-' -, ]Z ---- XI,XU- IXm 1 I~UIUU + VIVul - --

Thus, a standard specification for the Rayleigh quotient can be found by trans­
forming it via Eqs. (5.31), (5.32) into
the Hermitian form

Ap = f U I = s, [I] (5.33).

As a result the active-power transmission factor Ap covers the field of values [U]
of the Hermitian matrix of the form U, Eq. (5.15a,b), ranging along a segment of
the real axis (real -axis intercept).

Reactive-power Transmission Factor
The imaginary part of the complex power transmission factor which describes its
reactive (or quadrature) component, called
the reactive-power transmission factor

_ Qy _ Irn [Y; r; ] _x'V X _ [_]
AQ --- - -RQ x

Qx Im[x~xd ~'Ea~ -

rewritten in full notation

[-, -,][F2'IFi 1- Fi'lF2I F;IFi2- Fi;Fn ][XI ]
XI' Xu. , , , -
- - F22Fi 1-Fi2F21 F22Fi2 - Fi2Fn Xu

Ao [_. _,][0 -l][XI ]XI,Xn -
- - I 0 Xu

corresponds to the Rayleigh quotient RQL!J .

This ratio relating the skew-Hermitian form, Eq. (5.!7c), to the pure imaginary skew­
quadratic form, Eq. (5.26c), is a real number, and bounded, at which the matrix of the form

s; Eqs. (5.24a,b), is nonsingular.

Introducing by use of Eqs. (5.29a), (5.29b) the real vector Xg the components of which are

formed by the geometric mean of the real and the imaginary part of X i

(5.35a)



www.manaraa.com

278 5 The Flow of Power and Energy in Systems

it become s evident that the imaginary part of the product X~XI corresponds to the scalar

product

x; xg =[I"Ulun I,Munulll[jt~;:III] =ulu" - Unu' =Xi, + Xi, +.1' (535b)

being equal to the square of the vector norm of Xg

[
- 0 - ] 1_ 12Qx = Im X n X l = ~g (5.35c).

(5.36),

(5.37a)

(5.37b).

By use of the square norm of x g the equal ity to the standard form in the denominator, Eq.

(5.26c ), holds

_ 0 _ I 12
~ e , ~ = X~ X g = x g

and a normal ized input vector may be introduced

- ~ I [XI]
!.-= Ixgl = IJUIUn -UnUl! Xn

_0

t = ~ = [X; , X~]IXg I IJUlUn - UnUll

Thus, a complementary standard specification for the Rayleigh quotient can be
found by transforming it via Eqs. (5.36), (5.37) into
the skew-Hermitian form

jAQ =:(v~ = R Q [~] (5.38).

As a result the reactive-power transmission factor jA
Q

covers the fi eld of values
[V] of the skew-Hermitian matrix of the form V, Eqs. (5.15a,b), ranging along a
segment of the imaginary axis (imaginary-axis intercept) .

The 2-port Power Transmission in Summary
Standard Forms Coincident to Power States and Efficiency. It has been demon­
strated in view of both aspects arising from the transmission problem of power,
i.e., the transformation of power states as well as the effi ciency ofpower flow , that
steady-state energetic interactions of a causally reticulated 2-port result in the
complex generalization of quadratic forms. By decomposition of the complex
power into an active (or in-phase) and a reactive (or quadrature) component the
modified Hermitian form, Eqs. (5. l l a.b), as the modified Rayleigh quotient , Eqs.
(5.27a,b), can be reduced to the corresponding standard forms being more avail­

able for computing and significant for the insight into stationary flow of energy
through a 2-port.

Representing the complex input vector F by real matrices and applying nor-

malizing transformation , moreover the Rayleigh quotient can be reduced to the
explicit form of an integral notation . Thus, the power states in terms of active and
reactive power, P and Q, just as the corresponding real and imaginary ports of the
power transmission factor, Ap and AQ, are both specified in the two complementary
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standard forms, the Hermitian fo rm, Eqs. (5.16c), (5.33), and the skew-Hermitian
form, Eqs. (5.17c), (5.38).

The corresponding standard matrices of the form, U and V, contain the intrinsic
properties of the energetic system concerning the transmission problem, i.e., the
scalar transformation of power states which represents the energy fl ow character­
istic (power). The corresponding sets of composite parameters, Uim and Vim '

being terms of phasor ratio connectives, are significant for the frequency behav­
iour of the dissipative, respectively the idle component of stationary energy flow.
The real or pure imaginary elements, U fm ' Vim ' are furthermore related to the 2-

port parameters (general circuit parameters), Fim , of the transmission (or chain)

matrix F assumed to be known. This coefficient matrix of the signal 4-pole con­
tains the intrinsic properties of the energetic system concerning the transfer prob­
lem, i.e., the linear transformat ion of vector spaces which represents the effort­
flow characteristic by segregation of vector components (individual conjugate
variables), [120], [121].

Physica/Interpretation ofPower Efficiency. For ideal 2-port elements the equation of energy
continuity holds in its simplified form

n 2
:L P; = :LeJi = 0 (5.39)
i=1 ;= 1

where the sum is carried over the two ports. This presupposes that there cannot be internal dis­
sipation or storage of energy.

Thus, for an ideal transf ormer being said static or lossless, the power balance requires

equality of the active powers at both ends, and the active-power transmission factor Ap must be

unity. This coincides with the optimum efficiency 1]opt

p.. = P2 Apopt = 1]opt = P2 I Pt = I (5.40a),

since efficiency 17 is considered as a conception common for qualifying the energy transport
process in engineering devices.

In general, the real process of energy conversion cannot be represented without respecting
internal energy losses. Thus, for a real transfo rmer an inequality of the active powers at both

ends must be ascerta ined which corresponds to an active-power transmission f actor A p, respec­
tively an efficiency, being less than unity

p.. > P2 Ap = 1]= P2 / P.. < I (5.40b).

However , the classical conception of efficiency 17 conceives the power flux as a constant.
This defines the stationary type of steady state but under the condition of strict stationarity. On
the contrary, steady state of mechan ical systems in vibrations implies the condition of quasi­
stationarity, outlined in 5. Compared to the efficiency 1] the active-power transmission factor

Ap cannot be considered as a constant except for the special case of ideal behaviour. In general,

Ap represents the effecti veness of power flow only at a single frequency, becau se energy dissi­
pation depend s on frequency .

Nevertheless, the real process is not yet accomplished unless internal energy storage is taken

into account. As a result , the effectiveness denoted Ap is merely referred to the dissipative
component of power flow, whereas for quali fying its idle component the reactive-power trans­

mission factor A Q must be considered. AQ represents the wattless power flow only at a single
frequen cy. Regarding a spring-mass-damper system the energy storage interaction between the
spring and the mass also depends on frequency.
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For certain types of real elements, e.g., actual energy transformers , systems modelling takes
advantage of embedding the losses and dynamics in the transmission elements adjoining to the
terminals of an ideal transformer.

For real 2-port elements losses of effort and flow, as well as dynamic effects, such as iner­
tance and capacitance, must be taken into consideration.

Thus, for a real transmiss ion element the nonideal behaviour manifests itsself in dissipation,
scattering , and storage of energy.

Overall Power States and Efficiency. As already turned out steady state plays a dominant role
in providing an overall understanding of the behaviour of energetic systems. Looking upon
complex systems as a power transmission represented by a string of 2-ports, the 4-pole cascade
connection, 2.2.2 and 2.2.7, may be applied to the transmission problem for determining the
power states in the explicit form of a total energy flow characteristic.

Relating the complex power at the output port h to the complex power at the input port h-1
of the hth 2-port

Sy h / Sy h-I (5.41),

the generalized transmission ratio may be computed by applying the associate connection rule
at the ports, Eqs. (2.29), (2.65). Thus, the multiple product of all the individual quotients of
generalized quadratic forms results in
the total (or over-all) transmission factor of the complex power

S -·L -
0..2:.0 0 0-1 h 2 TI

O
h X 0 XAS =--= As · As ·· ·As .. · As = As = (5.42a)

-I SX I -0-1 -0-2 -h-I -I h=l-h-1 x·Ex
being equal to the modified over-all Rayleigh-quotient with the total field of values [L n]

marked out by the maximum values of the composite matrix elements, Lo, f m .

Though being analogous with successively multiplying individual efficiencies 17h together

along the transmission line, following the classical conception of total efficiency 1]1

n

171 = TI17h (5.42b),
h=1

a successive transformation of vector spaces is more convenient in favour of a reducible way of
calculating with quadratic forms. This preceding step results in the overall transmission matrix
F

n
of the composite signal 4-pole, Eq. (2.65), at first. Then the dyadic product of the conjugate

/,2' fO·transpose of the row vector 0 ' being equal to the column vector 2 ,and the row vector

f; yields

the overall coefficient matrix of the form

rr:Lo = f2 0

The real part of the modified over-all Rayleigh-quotient, Eq. (5.42a) , which describes its active
(or in-phase) component, may be called the total active-power transmission factor. This factor

A;\ corresponds to the total efficiency 17 1 ' Eq. (5.43a), for the special case of constant power

flux.



www.manaraa.com

5.2 Power Transmission through Mechanical Networks 281

5.2
Power Transmission through Mechanical Networks
(Generalized Impedance)

A J-port may be thought of as a generalized impedance, some specific examples
being resistance, capacitance, and inertance elements, together with all one-ported
networks composed of such elements.

Classical dynamics has been primarily concerned with reticular systems and
processes which can be effectively looked upon as a plurality of J-ports suitably
interconnected through ideal energy functions , 2.3 and 2.6.

Network (or circuit) representation generally assumes storage and dissipation
of energy at a finite number of localized regions, "lumps", or "points", e.g., mass
particles in mechanics, circuit elements in electric network theory. Such substi­
tutes for the actual underlying continuous (or distributed) system have often been
useful and productive.

Description of Networks
In electrical circuitry the networks are portrayed graphically by a meshwork of
lines, each one of which represents a component or subsystem (circuit element)
storing or dissipating, resp. converting energy. By use of a transformed compo­
nent model, e.g., a G(p)-plane (transfer-function plane) model, each component
may be considered as a general one-port impedance element.

The junctions are usually called nodes (or vertices). The line joining any two
nodes is called a branch (or path), and any closed path made up of branches is
called a loop (or circuit).

The topological properties of such networks are also usable for mechanical
networks, 2.3.4.

5.2.1
The Transmission Problem of One-port Networks.
FunctionalRe~tionships

One-port Relations (impedance relations)
The general functional operators tp , introduced in 5.1, could represent extremely
complex fields, processes, or networks, but one may always speak of them as im­
pedance relations, so long as but one port of the two interacting systems were in­
volved. Assuming both of the systems being isolated from the environment the
restriction to a deterministic system is true capable of exchanging power only at a
single port. For such elements the overall behaviour is defined by specifying the
functional relationship between effort and flow at the single port of entry.

Dynamic Impedances
Starting out from causality the power transmission must depend upon the product
of one input variable, X(t), and one output variable, yet). There are two general
forms which exist for the nonequilibrium or transient case



www.manaraa.com

282 5 The Flow of Power and Energy in Systems

the impedance fun ctionals
e(t ) ='Vef * I (t) (5.44a)

where X (t ) = l(t ); y et) = e(t), and

the admittance fun ctionals
I (t ) ='V fe *e(t) (5.44b)

where X(t) =e(t); Y(t )=I(t )·

Though being inverse functionals it must be distingui shed between these two
forms , since in view of the nonlinear property in general a well defined converse
of a given functional relation ship may not exist.

Review of Impedance Concept. Historically, the impedance concept grew out of the desire to
generali ze Ohm's law and the notion resistance to make certain elementary constant or direct
current (dc-) concepts applicable to problem s involving periodically varying or alternating
current (ac). This need arose in the course of growing generation of electricity and communi­
cation networks in the later part of 19th century . In dynamic analysis physical scientists, nota­
ble among them Helmholtz, Kelvin, Maxwell, and Heaviside , saw the analogous structure of
electrodynami cs and classical dynamics. For these early writers the natural analogy of the elec­
trical impedance, relating voltage to current, was the relation of force to velocity. However,
largely due to the historical precedence of static elastic analysis in mechanical problems , the
principal variables in mechanics were taken to be force and displacement. In this sense, the
mechanical impedance (respectively, mobility concept), finally being fitted to a force-to­
displacement ratio by the dynamic stiffness (respectively, concept ofdynamic compliance), may
be considered as the attempt to generalize Hooke's law and the notion of a spring constant to
problems in dynamics, as already treated in 4.2.1.

In the following the term impedance will be loosely used to describe all general
effort-flow dynamic funct ional relationships. This renders unnecessary such dis­
tinction between varying definitions.

Linear One-port Impedances
If the general funct ional operators are assumed to be linear in the form

'Vef =Z 'Vfe =Y (5.45a,b)

more customary definition of impedance are obtained based upon linear system
behaviour.

Conventionally, these linear operators, themselves, have been associated with
the concept of a linear imped ance, Z, and its reciprocal, the linear admittance, Y,
since now follows

e ='Vef *I = Z 0 I (5.46a)

1='Vfe *e=Zo e (5.46b) ,

thus Z 0 Y = I ; or Y = IIZ .

However , for linear systems with constant parameters (time-invariant or sta­
tionary models ) these operators may be expressed in the linear differential term
(of deri vatives with respect to time)

Z =ZeD) Y =YeO) (5.47 )
where 0 = dldt .
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By use of transform models (ardomain models) and their inherent topological
connections between the network elements the functional relationship can be ex­
pressed in the explicit form of the frequency-response (or dynamic) characteris­
tics, being designated the overall mobility and its related characteristics, 4.2.3 .

5.2.2
The Transmission Problem related to Complex Power. Phasor Power

By use of the introduced basic tools the flow of power and energy can be de­
scribed over the extent of the system. Though it might be possible to consider the
transient power flow the main interest turns upon the steady state of energetic
systems.

This process may be viewed either in the time domain or in the frequency domain. At first,
the instantaneous power S(t) at the node (vertex) of the parallel-connected structure, a funda-

mental configuration of mechanical networks, will be considered. Furthermore, S(t) is spec­

trally decomposed into §.(wi) but restricted to the single frequency component at driving

frequency wf . This explicit form of power state, termed the complex power §.(jWf) , repre­

sents the steady-state power relation by an algebraic function. With reference to the conven­
tional description for ac-power systems, the components of real or active power flow
P(Wf) and wattless or reactive power flow Q(wf) are presented. Sometimes it proves con-

venient to reticulate further each subsystem configuration into its spectral components

Pk (Wf), Qk (Wf) .

Harmonic Responses (phasor method)
Applying a periodic forcing function of arbitrary shape this periodic excitation
will be approximated by a Fourier series, F(t), in real or complex notation, Eqs.
(3.60a-c), treated in 3.2.1.

Then, if the system is stationary and linear, the response, s(t) , must be that due

to the superposition of responses, sn (t), caused by each simple harmonic of nth

order, Fn (t) , acting alone. These harmonic responses, sn (t) , can be derived by

examining the behaviour of a linear operation excited by a sinusoid at the integral
multiple of the fundamental frequency W n = rua1 .

Specifying a simple harmonic excitation and taking the velocity response and
excitation force at the same point in the system the power state is defined by the
individual conjugate variables designated
the actual excitation

Fro (t) = frcos(wft + rpF ) = FJ2 cos( wft + rpF ) (SA8a),

and the actual response

Vro (t) = vcos(wft + rpu ) = uJ2cos( wft + rpu ) (SA8b).

Representing the sinusoidal quantities of the effort-flow couple as phasors, 3.1.3,
the power state is rewritten in complex notation designated
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the complex excitation
F ro (t)=Fej<PFejrofl = Fe jro fl =f....J2e jro fl

together with the complex response
uro(t) = ue j<Puejro fl =~ejro fl =u.fiejro fl

(5.49a),

(5.49b)

where the corresponding complex constituents are determined by the characteris­
tic parameters, i.e., by
the phasor of the excitation force (force phasor)

F = Fej<PF =.fiFej<PF (5.50a),

the phasor ofthe velocity response (velocity phasor)

u = uej<pu = .fiuej<p u (5.50b);

in which the real constants are the amplitudes F;u,alternatively the Lm.S. values

F = .fiF/2; u = .fi u/2 , the initial phases qJF ; qJu ' and the forcing angular

frequency (pulsatance) COr'

Review ofPhasor Method and Remarks on Restrictions. Historically, the concept of complex
excitation and response was introduced by Ch.P. Steinmetz for simplifying the response calcu­
lation in electric circuitry . This classical approach to sinusoidal steady state of linear systems is
known in electrical engineering as the so-called symbolic method. Although the complex nota­
tion proves useful in dealing with many aspects of system analysis the use of phasors underlies
restrictions concerning vectorial operations. In particular, the consideration of complex quanti­
ties as complex constituents alone, Eqs. (5A9a,b), and subsequentl y the taking up of only the
real parts

Fro (t) = Re[Fro (t)] U ro (t) = Re[U ro (t)] (5.5 I a,b)

are steps marking a somewhat artificial procedure which is restricted to linear operation s. Pre­
supposing that the susperposition principle holds, the above mentioned simplification, Eqs.
(5.51a.b), is thus restricted to operations such as addition, subtraction, differentiation, and inte­
gration which are the operations encountered in the solution of linear differential equations with
constant coefficients.

In dealing with power and energy relation ships for electr ic circuits, E.A. Guillemin, [16],
pointed out, that for relationships which involve quadratic expressions, a similar procedure is
not possible since it is not true that the real part of the square of a complex expression is equal
to the square of its real part. Similar remarks on non-commutativity concerning squaring opera­
tion apply to the product of two complex quantit ies. That is to say, it is not correct to assume in
connection with Eqs. (5A9a ,b), that the product of two sinusoidal quantities expressed in com­
plex notation

Re[Fro (t). U ro (t)] = Re[£:~ej2ro fl] (5.52a)

may be written in place of the product of two sinusoidal quantities in real notation s, Eqs.
5A8a ,b)

Re[Fro (t)]. Re [U ro (t)] = Re [£: e
jro fl].

Re[~ ejro fl] (5.52b).

For multiplying sinusoids together the customary complex notation should be replaced by the

alternative form given by one-half the sum of the exponent ial factor ejro fl and its conjugate

e- jro fl with respect to Euler's f ormula (identity), Eqs. (3.20a,b). Implying an equivalent in-
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stead of only a represent ation of a sinusoidal quantity this form serves as a correct substitute
for the actual excitation and response in the following, [16], [120].

In contrast to the costumary complex representation the alternative form, Eqs .
(5.48c,d), substitutes for the actual excitation and respon se, Eqs. (5.48a,b)

F (t)=l[F (t)+F "(t)]=l[Fe jffi f ' + F"e- jffi fl]= l.fi[Fe jffi f l +F"e-jffi fl]
ffi 2~ ~ 2- - 2 - -

(5.48c)

v (t)=l[v (t)+v "(t)]=l[uejffi f' + u"e- jffi fl]= l.fi[uejffi f ' +u"e- jffi fl]
to 2~ -!2.. 2- - 2 - -

(5.48d)
where the complex quantities are paired off and determined by the force and ve­
locity phasors, Eqs. (5.50a,b), together with
the corresponding phasor conjugates

F" = Fe-j'l'F =.fi Fe-j'l'F

Actual Energy Flow (modified phasor method)
In the following the behaviour of energetic systems will be characterized in the
time doma in describing the power state by the scalar quantity termed
the instantaneous power in real notation

S(t) = Fffi (t)Vffi (t) = FU cos(OJr t + 'PF)cos(OJrt + 'PI,}

= 2Fu cos(OJrt + 'PF)cos(OJr t + 'Pu )

thus defining the product of the instantaneous values of the sinusoidal quantities
force and velocity at a port .

Substituting the complex constituents and their conjugates for the sinusoidal
quantities of the effort-flow product the power state is rewritten

s(t)=i[lejffif' +te-jffifl][~ejffifl +~"e- jffifl]

=[FU" +F"u Fue2jffifl +F"u"e-j2ffifl]
2 + 2

Multiplying the constituents together a term of partial products is obtained. Those
products being complex numbers, shortly termed phasor connectives, are signifi­
cant for the time behaviour of stationary energy flow through a linear one-port
impedance.

Being rearranged in complex pairs and their conjugates it becomes obvious that
this composite quadratic term including a constant and a time-varying component
of power is a correct substitute for the instantaneous power. Considering now the
pairs of phasor connectives as the real parts of a complex quantity, which may be
defined in point as the phasor of the instantaneous power §.(t), the actual scalar

quantity S(t), Eq. (5.53a), can be alternatively expre ssed in terms of the real part
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of the complex notation

S(t)=Re[f~' +f~ej20lft]=Re[~(t)] (5.53c).

Thus, the concepts of complex quantities and phasor representation , 3.1.3., will
be reutilized as a rule of operation in power transactions, though not for abridging
the multiplication of sinusoids, but the more applied to the correct substitute for
multiplying operations which yields

- the geometric interpretation of the effort-flow product by use of vector repre­
sentation in the complex plane (phasor of instantaneous power);

- the derivation of the energy flow characteristic in the frequency domain by
defining the complex power (phasor power).

Vector Representation ofPower (instantaneous power). Complex quantities rep­
resenting the actual quantity of a simple harmonic as well as of harmonics are fig­
ured in the complex plane by rotating phasors, likewise by counterrotating phasor
pairs, localized at the origin as shown in Fig. 3.3, 3.1.3, as in Fig. 3.6, 3.2.1.

Contrary to sinusoids and harmonics both being symmetrical quantities the
scalar quantity of instantaneous power differs from an alternating dependence on
time thus requiring some modifications in vector representation .

Viewing the composite quadratic form of power, Eqs. (5.53a-c), the actual en­
ergy flow appears as a pulsating quantity associated to a periodic quantity of non­
zero mean value. For the special case of the underlying energy flow the phasor
suited to represent the pulsating property of energy is a total vector resulting from
component phasors in two equivalent forms of localized vectors. Both forms of
decomposition base on the linear operation of vector addition including constant
(resting) and time-varying (rotating) phasors, the latter of which being in general
localized outside the origin and rotating at double the forcing angular frequency.
Thus, taking the corresponding projections on the real axis as customary the geo­
metric interpretation holds for the actual energy flow in respect of its pertinent
direct component as of its double-frequency alternating component.

Performing the decomposition ofpower in view of the two forms being signifi­
cant of linear energetic systems , e.g., electric circuits (ac-power systems) as well
as (linearized) mechanical systems in vibrations (vibration machines), it becomes
obvious that the superposition principle remains valid for summing up partial
products of the composite quadratic term of power. The prior condition of vector
addition is preserved, thus the vector representation of power is true, [108].

Spectral Decomposition of Power into Average and Alternating
Components
Taking up the total phasor of the instantaneous power §.(t), Eq. (5.53c), the de-

composition of this complex quantity into the phasor components

§.(t) = §. + SOl (t)
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corresponds to a decomposition of the instantaneous power expressed in terms of
the real parts

S(t) = S_ + s; (t)

= FuRe[ ej<i>1 1+ FuRe[ e j (2ro fl+<i>u+<i>F)]

= Fu COSlfJl + Fu cos( 2mr + lfJu + ((JF)--- ---=s =s
'--v----' ' v

=S_=P =Sro(t)

Accordingly, the pulsating quantity of actual power flow is to be interpreted as the
resultant of two power components

- the average power being the direct component S_ of the instantaneous power

S(t) ;

- the wattless power being the double-frequency alternating component Sro (t) of

the instantaneous power S(t).

The direct component of Eq. (5.54b) is defined as

the mean value of the instantaneous power S(t)
II+T

S_ =P= ~ fFro(t)v ro(t)dt=Fro(t).v ro(t)=S(t) (5.55a)
II

taken over one period of the pulsating quantity S(t) at a port, which is identical

to the active power P.

Average Power S_. The power component S_ , Eq. (5.54b), corresponds to the

dissipative flow ofenergy which is absorbed by the real one-ported network owing
to losses ofeffort and flow .

The consumption of energy being concentrated on the resistance element
(damper) presupposes an effective energy transaction across the transmission link
of the network being considered as a generalized impedance. The energy flow
entering the port must be an equivalent on the average to the dissipative energy
flow, and is delivered by a power supply (mechanical source) to the network (me­
chanical circuit).

Wattless Power Sro (I). This designation applied to the power component Sro (I) ,

Eq. (5.54b), is appropriate for turning out the idle flow of energy which is
swapped back and forth by the real one-ported network on account of dynamic
effects .

The alternating component of Eq. (5.54b) thus reflects the total swappage of
energy including the energy storage interaction between the capacitance and the
inertance element (spring and mass) as well as the compensative energy transac­
tion across the boundaries of the linear one-port impedance (mechanical source
and circuit) . The energy continuously interchanged with the power supply origi­
nates in the dynamic effects of energy storage (mechanical circuit store) being
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alternately governed by the capacitance or the inertance. Thus, periodic fluctua­
tions in energy storage capacity occur in the network.

The peak value S of the alternating component Sm(I) , called

the apparent power S

S= Fu = (FuI2) = S (5.55b),

is defined as the product of the r.m.s. values of the sinusoidal quantities force F
and velocity u at a port.

The extent to which the circuit absorbs power from the source is characteristi­
cally ind icated by cosq1. , Eqs . (5.54b), (5.55). This characteristic magnitude,

termed
the power fa ctor A.

A. = PIS = cose , (5.56a),

is defined as the ratio of the active power P to the apparent power S at a port.
The actual energy being a pulsating quantity flows from the circuit back into

the source as well as from the source into the circuit, in general, energy flows in
both directions .

Assuming a resistance element as existent, then more energ y on the average
flows into the network than is returned to the source. That is to say, for a passive
network the average power P is always less or at most equal to the apparent power
S:

P5,S A. 5, I (5.56b ).

The value of the power factor A. is unity for q1 \ =0 and zero for q11 =±1t/2 . The

first case occurs if the impedance contains only a resistance (de-case), e.g., at
resonan ce, whereas the latter case results from the absence of any resistance
(lossless circuit) .

Vector Representation ofPower Decomposition (polar form). The repre sentation of the power

flow in the complex plane bases on the compl ex notation of instantaneous power, §.(I) , in the

decompo sition of the one form referred to Eq. (5.54a).
The summing up of power components of the pulsat ing scalar quantity S(t ) , Eq. (5.54b),

corresponds to the vector addition of a constant (resting) phasor, and a time-varying phasor
which rotates at double the frequenc y upon the tip of the resting phasor. The latter one denoting

the complex power §. , thus termed phasor power, represents the direct component S_ = P ,

wherea s the rotating phasor §.!mlocalized outside the origin represents the superimposed alter-

nating component Slm.

Tak ing the projections on the real axis, both of the actual power compon ents, S_ and Slm'

are then reproduced correspond ing to Eq. (5.54b), thus the actual energy flow SI can be com­

pletely traced out in real rectangular coordinates, [120] .
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Spectral Decomposition of Power into Active and Reactive
Components
An other, most convenient decomposition of power follows from eliminating one
of the two initial phases assigned to effort and flow with respect to the second
term of the actual power flow S(t) , Eq. (5.54b). Related to the phase of force ({Jc,

or to that one of velocity ((JI) ' this will be carried out with more efficiency by tak­

ing up the phasor of the instantaneous power 0.(t) and applying operations of

conversion to the complex representation of actual power , Eq. (5.54a) .

Adjusting to Rectangular Form (elimination of phase of force). The other de­
composition of the complex quantity 0.(t) follows from adjusting the phasor com-

ponents to only in-phase P and quadratic terms Q. For this reason an unit phasor is
inserted as an adjusting multiplier to the effect that the phase of force ({J c is elimi-

nated. Thus, the rotating phasor component of Eq. (5.54a) may be reduced to

the form of a scalar triple product
0.(t) = !!..(t) +~ (t) = S_ + Pro (t) +~ (t)

= Ft/ + Fl/ ~~ ej2rofl (5.57a) .
-- -- "....".-

V v

This dot product contains the resting phasor component Fv· as the first factor.

The adjusting unit phasor

~ =~ = ej2'1'u (5.58a)
v'v IQI 2

is a constant phasor which only involves a rotation through twice the phase of
velocity 2({Ju in the counterclockwise direction.

This rotation is done (once) about the origin of the phasor which represents the
first factor of the triple product.

Specifying this first factor by the rectangular form of the resting phasor, where
P and Q are the real and imaginary parts, the complex quantity 0.(t) will be re-

written
~(t) = (P + jQ) + (P + jQ)e j2(ro fl+'I' u) (5.57b),

and the actual scalar quantity Set) can be expressed in terms of the real part of the

complex notation
S (t) = P( t ) +Qro (t) = P_ +Pro (t ) +Qro (t)

= P + Re[(P + j Q)e j2( ro fl+'I' u)] (5.57c).

= FvRe[ej'l'l ]+FvRe[ej'l'l e j2( ro ft+'I'u)]

Applying the rule of multiplying complex numbers to the second term written in
trigonometric form

Rer~d =(~~:)' = z'r' - z"r" (5.59)
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the power state is described in an alternative form by the instantaneous power in
real notation

S (t) = F Ucos'P\ + FU[cos'P\ cos2(mrt + 'Pu) - sin'P\ sin2(mrt + 'Pu)]

= F Ucos'P\ [1 + cos2(mrt + 'Pu) ] -Fu sin 'P\ sin2(mrt + 'Pu)"-,..----' ......, . ~ (5.57db.)
=P- =P =P~ (t) =Q

'-------v-----'

=P(t) =~(t)

The operation on complex numbers results in the known addition formula in
trigonometry which involves the geometric interpretation of vector representation
in the complex plane.

Accordingly , the pulsating quantity of actual power flow is to be interpreted as
the resultant of two power components

- the actual act ive power turning out to be by itsself a periodic quantity pet) of
non-zero mean value;

- the actual reactive power being a double-frequency (symmetrical) alternating
component Qro (t) .

The direct component of the first power component of Eq. (5.57d) is defined as

the mean value of the actual active power pet)

P_ = pet) = F Ucos'P\ = (Fu12) cOS'P\ = S: = P (5.60a)

taken over one period of the pulsating quantity pet) at a port, which is identical

to the average power S_ , Eqs. (5.54b), (5.55a), thus being equivalent to the active

power P.

Active Power P. The power characteristic P of Eq. (5.57d) equals the mean value
P_ , Eq. (5.60a), thus corresponding to the dissipative flow of energy owing to

losses ofeffort and flow .
The alternating component of the first power component of Eq. (5.57d), called

the alternating active power Pro (t) , is associated with the idle flow of energ y on

account of dynamic effects.
Contrary to the wattless power Sro (t) , Eq. (5.54b), only the energy storage in-

teraction between the capacitance and the inertance element (spring and mass) is
included in Pro (t) .

The peak value P of the alternating active power Pro (t)

P= Fucos'Pj = P_ = P (5.60b)

is equal to the direct component P_ , Eq. (5.60a), thus being equivalent to the ac­

tive power P.

Reactive Power Q. The power characteristic Q of Eq. (5.57d) equals the peak

value Qof the alternating component eo (t)

Q = Fusin'Pl =Q (5.61).
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The second power component of Eq. (5.57d), called the alternating reac tive
power ~ (t), is likewise associated with the idle flo w of energy on account of

dynamic effects.
Contrary to the wattless power Sll! (t), Eq. (5.54b), only the compensative en-

ergy transactio n between the power supply and energy storage (mechanical
source and circuit) is included in ~ (t ).

Vector Representation ofPower Decomposition (rectangular form). The representation of the

power flow in the complex plane bases on the complex notation of instantaneous power, §.(t ) ,

Eq. (5.54a), however in the decomposition of the other form referred to Eqs. (5.57a,b).

The summing up of actual power components being adju sted to only in-phase P and

quadrature terms Q , Eq. (5.57c), corresponds to the vector addition of phasor components, Fig.
5.2.

The constant (resting) phasor components, P andjQ, form the resultant constant vector , and
the time-varying phasor components result in a phasor which rotates at double the frequency

upon the tip of the resting vector. The latter one denoting the complex power §., thus termed

phasor power, represents the direct component P_ = P of the actual active power ~ ,

whereas the rotating phasor components fI ll! and Q , localized outside the origin, represent
-Ill!

the alternating components as ~ll! of the actual active power ~ , and QIll! denoting the actual

reactive power.

The families of resultant and orthogonal component phasors, §., P, jQ, as §.Ill!' fI ll! '

Q . span two right triangles of power being plane geometric figures distinguished by con­
- Ill!
gruence, Fig. 5.2a, shaded areas.

The triangle outside the origin rotates about the top vertex of the triangle fixed by one of the

base vertices in the origin. At the instant specified by t = -rp u / OJf the shaded geometric

figures are in parallel position, because there is no difference in direction between the resultant
constant vector, defined as the phasor power §.• and the resultant time-varying phasor §.Ill! '

Only at this definite point of time the dot-dashed phasor of the instantaneous power §.(t) just

equals the double phasor power §., thus §.(t) = 2§., as traced out.

Finally, by locating the quadrature phasor component Q on the origin the decomposition
-Ill!

of power is fitted to be performed as customary by taking the project ions of three position vec­
tors on the real axis. Those vectors located in distinct vertices are the phasor power §. , and the

two rotating phasors PI • Q . The actual power components implying the pulsating active- ll! - Ill!

term ~, as well as the alternating reactive term QIll!' are then reprodu ced taking the projec­

tions on the real axis in respect of Eq. (5.57d), thus the actual energy fl ow SI can be com­

pletely traced out in real rectangular coordinates, Fig. 5.2b, dot-dashed curve.

Adjusting to Rectangular Form (elimination of phase of velocity). A comple­
mentary form of decomposition into active and reactive components is also con­
venient and efficiently performed with reference to the complex representation of
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Fig. 5.2. Complex representation of instantaneous power implying the decomposition into
active and reactive components and their projections on the real axis. a Phasor diagram of
power; b time history of power

actual power, Eq. (5.54a) . Again an unit phasor is inserted as an adjusting multi­
plier but to the effect that the phase of velocity rp o is eliminated.

Thus, the rotating phasor component of Eq. (5.54a) may be reduced to
the form of a scalar triple product

~ . ~ . F F '2
S(t) = Fu + F u-==-eJ rof! (5.62a),- -- - ...... .......

F F
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(5.62c).

v

= Qlll (t)

which contains the conjugate of the resting phasor component Fu· as the first

factor. The adjusting unit phasor
...... ...... ...... ......
FF FF .

-==- = =-=- = eJ2'PF (5.58b)

F·F 1£1 2

is a constant phasor involving a rotation through twice the phase of force 2rpF in

the counterclockwise direction .
FolIowing Eq. (5.57b ) the complex quantity §.(t) will be rewritten

~(t) =(P + j Q) + (P - j Q) e j2( lll fl+'Pf} (5.62b),

and the actual scalar quantity S, can be expressed in terms of the real part of the

complex notation
s, = P+ Re(P- jQ)e j2(lll rt+'Pf}

= FuRe[ej'Pl ]+FuRe[e-j'P' e j2(lllf l+'PF)]

=Fucosrpd l + cos2(mft+rpF) ]+Fusinrplsin2(m ft +rpF)
'------..----' , , '-----v------'

=P_=P =P~(t) =Q
'---------.,------

=P(t)

The 1-port Power Transmission in Summary
Concept of Phasor Power. A most considerable result of spectral decomposition
of power is the specification of actual energy flow by use of the phasor method, in

particular by the reduction of the time-varying complex quantity §.(t) to a com-

plex parameter given by the phasor product Fu· being invariable with changing

the form of decomposition of power. Whichever of the spectral components are
favoured , representing either the average and wattless power, Eq. (5.54a) , or the
active and reactive power, Eqs. (5.57a) , (5.62a), in any case the first term of the
complex quantity §.(t) coincides with the phasor product mentioned above . This

phasor connective, identified as the complex power §., constitutes the concept of

phasor power as pointed out in the folIowing.

Vector Representation of Complex Power (phasor power). Returning to the
vector representation of sinusoids modified to power relations, 5.2.2, the scalar
quantity S(t) in the steady state (instantaneous power) can be gathered solely

from the one complex parameter, the complex power §., Eq. (5.63a), as demon­

strated by use of modified phasor method.
For characterizing the sinusoidal steady -state behaviour not the pulsating

quantity of actual power flow is in one's particular interest. The steady-state scalar
quantities being significant of actual power are calIed the characteristic parameters
of power. Those parameters, graphicalIy interpreted as resultant and orthogonal
component phasors , make the superposable sides of two right triangles of power,
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Fig. 5.2a, shaded areas. Hence, owing to congruence of the power triangles in dia­
gram representation solely the triangle fixed in the origin must be delineated. It is
illustrated by the shaded plane geometric figures that for both of the decomposi­
tion forms of power the significant power parameters are associated with the

complex power §. , likewise with its conjugate S· .

Thus, in diagram representation the steady-state power relation is figured in
terms of constant (resting) phasors, corresponding to the power variables, which
form the resultant vector defined as
the phasor power §.(jlVf)

. -~. I ~ ~ .

~(JlVf) = E.!:!. = 2. E.!:!.
= Fejq>F u-jq>u = Fuej(q>F-q>u) = Fuejq>l (5.63a)

= Fucosrpl + jFusinrp\ = P+ jQ

for a l-port component.
To each forcing (angular) frequency lVf corresponds a single (inner or dot)

product of the (r.m.s.) force phasor E., Eq. (5.50a), and the conjugate of the

(r.m.s.) velocity phasorii" ,Eq. (5.50d), being assigned to a particular value of

the complex power: ~(jw).

It should be pointed out that the product of force phasor and velocity phasor
depends on the angular frequency lV, thus, the resultant vector changes both, its
length and its direction, as ca varies from 0 to 00 . For each frequency variable as-

signed to a particular forcing frequency ta = lVf the corresponding phasor power

may be plotted as a single point in the complex plane, called, in this case, the
complex power plane, Fig. 5.5.

Thus, a transformation of the time-dependent scalar quantity Set) into the fre­
quency domain is performed.

Review of Phasor Power Concept. Historically, E.A. Guillemin, [16], thought it logical to re­
gard the resultant vector of average and reactive power component as a complex quantity de­
noted "vector power" which proves useful in electric circuits to form energy functions for the
sinusoidal steady state.

The term "phasor power" being proposed by electric power engineers has been combined
with a concept which simplifies to define the operating condition of an electric power system.
This has been outlined by W.A. Blackwell, [52]. Applying the concept of phasor power to more
complex networks, e.g., unbalanced polyphase alternating-current systems, V.N. Nedelcu,
[108], defined the energy function "complex power" as

the mean value of the complex quantity §.(t)

II+T

S_=~(jlVf)=0 ftFw(t)[VwCt)+vw'Ct)]dt
II
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where the complex quantity of power, §.(t), is expressed by complex constituents and their

conjugates for sinusoidal quantities, Eq. (5.53b), in the suited (shortened) form

SI ~FOl(t) [VOl(t)+VOl"(t)] E..ejOl rl [QejOlrl+!;te-jOlrl]
(5.65).

S; ~FOl "(t)[VOl(t) + v'""(t)] {e-jOlrl[QejOlrl + Q"e-jOl rl]

For the power product in complex notation sometimes the conjugate form is preferred resulting

in
the phasor power conjugate §." (j OJ r )

" . ~" ~ l ~" ~
§. (jOJr)=f. !!.=if. !!.

= Fe-j'PFuej'P u = Fue-j('PF-'P u ) = Fue-j'Pl (5.63b)

= FUCOStpl - jFusintpl = P- jQ
for a l-port component to be defined, respectively, as

the mean value of the conjugate of the complex quantity §." (t)
II +T

S~ ={(jOJr)=t f tF;(t)[VOl(t)+V:(t)]dt
II

= t F; (t) [V", (t) + v: (t)] = S" (t)

In vibrations power transactions have been treated to a certain extent though belonging to a
subsidiary matter as outlined in 5. However, for applying the vibration method to working pro ­
cesses the attention of mechanical engineers turned to the pulsating quantity of power flow
regarding economical aspects of power supply as well as to the alternating quantity of force
transmission respecting the design ofstructural members for vibration machines.

CLP. Fleck, [110] , improved the directly drived vibration generator system by additionally
mounted springs tuning them to resonance to the effect that both the reactive component in
power transaction as the force in the driving mechanism of the crank connecting rod-type gen­
erator have been minimi zed .

Various mechanical vibration generator systems, or mechanical vibrators for short, have
been developed the main types of which are classified as direct drive and reactive-type vibra­
tors. The latter class generates an excitation force by means of a rotating unbalance or a recip­
rocating mass .

H. Schieferstein, [Ill], has been engaged in a comparative analysis of direct-drive and reac­
tion type vibrators in view of mechanical energetic systems getting benefit from the resonant
effect. Thus, the effective power or the economy of operation became a subject to investiga­
tions.

E. Lehr, [63], provided a comprehensive survey of mechanical, likewise of electric vibra­
tors. Varying fundamental configurations of structures and applying harmonic excitation to
different points on a structure the steady state behaviour of basic vibration systems is analysed.
To prove their usefulness for system design several guiding performance criteria have been
specified. The balancing of forces is graphically interpreted by use of vector representation as
customary in electric engineering. Yet, the alternating components of power interaction are
illustrated as the side s of a rotating right triangle , thus performing a graphical interpretation of
rectangular power decompos ition basing on real diagram representation.

Apart from the requirements of vibration machines the development of mechanical vibrators
has progressed due to exacting specifications arising from vibration tests as pointed out next to
E. Lehr, [63] , by W. Spath , [112] , and S. Berg, [113].
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In recent years, different wave forms of vibrations have been generated for environmental
testing procedures, [114], likewise for methods of fatigue testing, [115], [116]. As regards vi­
bration and shock generating equipments , [117], [118], as to fatigue testing machines , [119],
mechanical vibrators have been widely replaced by electrodynamic and hydraulic vibration
generator systems. Their advantages in the main equipment characteristics concerning wave­
form types and waveform distortion, as parameter controlling and accuracy controlling, brought
into focus vibration control methods. Since system approaches peculiar to controls, respective
to vibrations, are combined the basis is formed to understand the transformation and flow of
energy for mixed physical domains (mixed-domain systems). Contrary to measuring systems or
system analysis the energetic system design requires a representation of driving power flow in
the frequency domain.

D. Findeisen, [120], [121], proposed by the two attempts of energetic system approaches,
5.1 and 5.2, to use the efficient relationship of complex power for expressing the energy flow
characteristic in terms of an algebraic function in the frequency domain ({()-domain). In contrast
to the customary procedure still prevalent in vibrations treating the scalar quantity of actual
power only in real notation the realized explicit form of power state bases on the complex nota­
tion. To gain acceptance in vibrations the abstract term "complex power" has been graphically
interpreted by vector representation modified to power relations, 5.2.2. As demonstrated , the
significant power parameters are uniquely associated with a resultant vector called phasor
power. This graphic form of power state hitherto reserved to electric power engineering also
may have become accessible to vibrations. By this, vibration theory gains an effective tool of
system design in the steady state by combining the concepts of dynamic compliance and phasor
power. Thus, by completing functional relationships the energetic system approach is applied to
basic vibration systems representing fatigue testing machines. Using system phasor models ((()­
domain models) both, the dynamic characteristics, and the energy flow characteristics are speci­
fied by polar plots referred to load or displacement control (force or stroke).

Specifying Significant Power Parameters. Considering the polar form of Eq.
(5.63a), the phasor power is specified by its modulus denoting
the apparent power S, Eq. (5.55b),

1~(jmf)1 = S = Fu (5.65a);

and by its argument designated as
the impedance angle fIJI

arc~(jmf) = fIJI = flJF - flJ u

Using the phasor representation of the individual conjugate variables, force and
velocity, the apparent power is the product of the magnitudes of force and velocity
phasors (r.m.s, values product); whereas the impedance angle is the angle of the
force phasor with respect to the velocity phasor, in short the relative phase angle
(phase difference).

With regard to the rectangular form of Eq. (5.63a), the phasor power is speci­
fied by its real and imaginary parts which represent transacting components being
significant for the insight into stationary flow of energy through a l-port compo­
nent. The real part of phasor power describing the active (or in-phase) component
is called
the active power P, Eqs. (5.55a), (5.60a),

Re[~(jmf)] = P = SCOSfIJl = FucosfIJl (5.66a);
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and the imaginary part of phasor power which represents the reactive (or quadra­
ture) component is called
the reactive power Q, Eq. (5.61)

Im[~(jwf)] = Q= S sinfIJl = FusinfIJl (5.66b).

Using individual phasor variables the active power is geometrically interpreted as
the product of the magnitude ofveloeity phasor and that component oi force pha­
sor being in phase with velocity phasor; whereas the reactive power results from
the product of the magnitude of the veloeity phasor and that component of force
phasor being in quadrature to the velocity phasor. The first product yields the
average power component, the second one a wattless or quadrature component.

The apparent power S as its in-phase and quadrature components P, Q are
specifying the resultant phasor power ~. The family of real characteristic pa-

rameters S, P, Q span a (resting) right triangle of power in the complex plane, Fig.
5.2a. Thus, the phasor diagram of power yields with ease the impedance angle fIJ I .

This is the fourth parameter being significant for deriving a characteristic magni­
tude in power engineering, the power factor A, , Eq. (5.56a).

To the specification of significant power parameters it is irrelevant if the phasor

productl~'or its conjugatet~, i.e., whether~(jwf)' Eq. (5.63a), or{(jwf) '

Eq. (5.63b), is defined as the resultant phasor appropriate to applications of phasor
power concept in vibrations. The transacting components of stationary flow of
energy are equal except for the sign of the reactive (or quadrature) component.

The sign of reactive power is an arbitrary choice which associates

Q < 0 with fIJI < 0

Q> 0 with fIJI > 0

(velocity lagging force);

(velocity leading force) .

Assuming for causal I-port components a phase of responding velocity which lags
the exciting force the conjugate form ofcomplex power, Eq. (5.63b), may be taken
as a basis for the following phasor power calculations.

5.2.3
Connections with Frequency-response Characteristics.
Combining Dynamic Compliance and Phasor Power Concepts

By transforming time-dependent power transactions into the frequency domain
the spectral decomposition of power has been reduced to decomposing a resultant
vector, termed the phasor power, which permits the insight into the steady-state
behaviour of power and energy flow through linear I-port components.

The general effort-flow dynamic functional relationship is now expressed in
terms of the complex ratio of the excitation force phasor to the velocity response
phasor. The corresponding phasor ratio (complexor), designated the mechanical
impedance (phasor impedance), 4.2.1, will be fitted in the sequel to a force-to­
displacement ratio representing the dynamic stiffness of the structure (phasor stiff-
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ness). This equivalent definition of a frequency-response function expressing mo­
tion response as displacement represents a dynamic characteristic related to phasor
impedance but basing on static elastic analysis with force and displacement as the
principle variables in mechanics, 5.2.1. Exemplified by the power flow of a basic
vibration system the vector representation of phasor ratios (complexors), Fig.
3.20b, 3.2.10, will be completed by the vector representation of phasor power
(complex power), Fig. 5.2a, 5.2.2, thus illustrating the usefulness of combi ning
the concepts of dynamic compliance and phasor power for vibration design appli­
cations.

Driving Power of Vibrators (phasor power concept)
The model system of a vibration machine is reduced to a one-degree-of-freedo m
system undergoing a harmonic motion that provides excitation at the point B. the
simplified configuration consists of a mechanical source acting by a displacement
of the amplitude It on a mass m and a two-element subsystem k, c in parallel sup­
ported from a frame at A. The device is directly driven by the driving mechanism
of crank connec ting rod-type, Fig. 5.3.

® Foundation point ® F(t)

(reference frame)
,._.

©
I

Object point k

® Driving point I

©
I._. - _ ._ .

@ Foundation point s(t)
(reference support)

® u(t)
Equation of motion

s (t) =u(t)

=Dcoswf t @

a

F=K u=ku-s k- -

A A 2 .....

E m=Kmy.=;mwfu"
~--~ Eges=-Em

F" K (. )" Ed=KcQ== w U "- "A J f - =J·CWU({) =arc F f_rF _ 8

Fig. 5.3. Direct drive vibration machine. a Schematic diagram of mechanical vibration
generator connected with fundamental configuration in parallel; b phasor diagrams of
driving displacement and velocity. element forces and rod force
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One-port Relation (phasor ratio). The overall behaviour of the one-ported net­
work is defined by an impedance relation which will be fitted to principle vari-
ables in mechanics. Using a transform model (ze-domain model) the corresponding
phasor ratio of the dynamic functional relationship between driving point B and
foundation point A is directly driven by the procedure of network simplification
(basic tool of network diagram reduction). Spring and damper forming a two­
element section in parallel the dynamic stiffne sses of structural components inci­
dent to the connecting reference frame A are added, 4.2. Thus, the phasor relation
between responding force and exciting displacement at different points is specified
by a frequency-response characteristic designated

the transfer dynamic stiffness (phasor stiffness) !S..A (jaJf)

KA (jaJf) = t; = Kk + K, = k + jCaJf = CA -l(jaJf) (5.67)
- U -

of the parallel-connected structure, or the inverse of the transfer dynamic compli­
ance ~A (jaJf ) .

(5.68a)

2j

Power State at the Single Port of Entry. For the representation of driving power
flow an explicit form of power state will be expressed in terms of the pertinent
effort-flow product at the entering port in complex notation.

Individual Variables (effort-flow couple). Approximating the translational driv­
ing motion and the force at the driving point B by simple harmonics the individual
conjugate variables velocity and fo rce have to be specified at first.
The actual exciting displacement

uejw f1 +u'e- j w f 1

Uoo (t) = ucos(aJft + qJu) = 2

is related to its time rate of change or power variable, the actual velocity

mf ~ejoofl - mf t/ e- j oo f 1

itoo (t) = -aJfusin(aJft + qJu) =

(5.69a).

(5.68b),

,.. . ". .
A 1t ite JOO f 1 + it e- JOO f 1

= aJ f U cos [ to f t + (qJu +"2) ] ==------='----
~ '-v--' 2
=~ =qJu

The sinusoidal motion variables are equivalently expressed in terms of paired off
complex quantities thus serving as the correct substitute for the actual excitation
and its first derivative with respect to time .

The complex constituents are determined by
the phasor ofthe exciting displacement

A I A I J"arcii A J" '"
~ = ~ e - = ue "YU

and the phasor of the excit ing velocity

(5.69b) .

=u
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The second power variable complementary to velocity is the force at the branch
rod linked up with the connecting-rod head and driven by the crank, for short,
the actual rod force

A FBejrofl+F~e-jroft

FBro(/)=FBcos(m r/+lpF)=- 2- (5.70a).

The complex constituents are determined by the phasor equation expressing
the phasor of the rod force

FA _ K A_I FA I jarcFB _I K II AI jarc(FB+Q)
B- B~- Be - B ~e- - - -

Contrary to the presupposed velocity it the second power variable Fa is a quantity
indefinite in magnitude and phase.

The determination of the associated force phasor will be readily performed by
use of one-port relations (impedance relations), 5.2.1 . Thus, the overall behaviour
of the configuration at the single port of entry is a functional relationship specified
by the corresponding phasor ratio, 4.2.3.

Applying the approved procedure of network simplification to the three­
element section in parallel the dynamic stiffnesses of the components incident to
the junction (node or mechanical vertex) B are added to form the overall fre­
quency-response characteristic f(jmr) , Eq. (4.25a), 4.2.3. Thus, the phasor rela-

tion between responding rod force and exciting displacement at the same point is
specified by a dynamic characteristic designated
the direct dynamic stiffness (phasor stiffness) f B(jmr)

F
KB(jmf)= ; =!f:(jmf)=Kk +K c +Km =(k-mmn+jcmf

of the parallel-connected structure.

The phasor relations between the element forces F:, and the exciting displace­

ment it

damping (or damper) force Fd = Kc ~ = j cm r~

elastic (or spring) force

inertial (or mass) force

(5.72a)

(5.72b)

(5.72c)

are characterized by the phasor stiffnesses of the elementary (I -port) components ,
Eqs. (4.58a,b .c), 4.2.5. The balancing of element forces and rod force can be il­
lustrated by the force phasor polygon, Fig. 5.3b.

The transformation in variable and scale, outlined in 3.2.11, results in the ad­
justed (data-reduced) form of a normalized response ratio of phasors designated
the normalized direct dynamic stiffness X k (j1]I) ' Eq. (4.62), being characterized

by the normalized element stiffnesses, Eqs. (4.64a,b,c), 4.2.5.

For predicting performance criteria , such as the rod force amplitude FB , the

phasor ratio polygon proves useful, Fig. 5.4.
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K (.WI) .-
X ( . )- -s Jen;; _Es
- k J171 - K - kii

k _ r:

~J~
~'f

.~
\S

•.~'l'

F
jlmXk(171)=XkC= kQ=j2~171

Xi<C(171)= ,

Fig. 5.4. Phasor diagrams for parallel-connected basic elements in the dynamic stiffness
plane. and data-reduced in the normalized stiffness plane

The rod force, to be transmitted by the vibration generator for applying a pre­

supposed constant-amplitude motion uor it, at the driving point B is related to
individual phasor rations, the contributions of which result in the composite char­
acteristic of dynamic stiffness.

With reference to phasor power calculation, Eq. (5.63b), 5.2.2, the conjugate of
the frequency-response characteristic may be defined as

the (direct) dynamic stiffness conjugate K~ (j to c)

i'
K~ (jmc) = A~ = K' (jmel = Kk - K; + Km = (k - mmn - jcmc (5.71b),
- u

normalized form
K' .Olf A.
---.!!.(J ro;) FB '. ( 2) .
=:......-~= -A- = X k (J17I) = X kk - X kc + X km = 1- '71 - J2('71 (5.71c).«, F

stat
-

Writing the conjugate of the response ratio of phasors in rectangular form the
composite characteristic is specified by performance criteria as
the modulus ofdynamic stiffness

IK~ (jmell = I~r-R-e2---[K-;=(-jm-c--')]--+-Im-2--'[K-
B
-' (-jm-c-----O<)] I

(5.73a),

=jJ(k-mm;)2+(cmc)21=kIJ(1-'7?)2+(2('7d2
1
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and the argument of the dynamic stiffness conjugate

• ~K;(jliJdl eliJ
arc KB(jliJr) = arctan [ : ] = - arctan r 2

- Re KB(JliJr) k - mliJr
= -arctan 2S'712 (5 .73b).

1- '71

Actual Energy Flow (effort-flow product). To realize the energetic system approach there is
no need for expressing the driving power state in terms of the actual energy flow . Although it
adds some illustrative interest to power calculations by applying the modified phasor method.

By use of the phasor of the instantaneous power at the driving point B the actual scalar
quantity can be expressed in terms of the real part of the complex notation

SB(t) = FB", (t) . Uco (t) = Re[!FB ~. + tFB ~ej2COfl] = Re[ Set) ]

= Re[tF~ ~+tF~ ~. e-j2COfl]= Re[ S*(t)]

[ ~. ~. ]..... .... .... ..... u u .
= Re 1 F, u +1 F, it -;:: ;::- e- J2 co fl

2 B_ 2 B_ .. '- - uu

= tFB ~ Re[ e- j"'l] +tFB ~ Re[ e-j"'l e- j2(CO fl+'Pu)]

'--y---J

=S
(5.74a),

finally, in real notation

1 A A 1 A A

SB(t) = '2 FB itCOS/PI [1+ cos2(wr t + /Pit)] - '2 FB it sin /PI sin 2(wr t + /Pit)
~ '-----v-----'

=p =Q

(5 .74b).

The decomposition of the conjugate of the complex quantity ~: into phasor components corre­

sponds to the decomposition into active and reactive components, Eq. (5 .62c).
Significant power parameters are specified by the angle of the rod force phasor with respect

to the exciting velocity phasor, called

the impedance angle /PI' Eq. (5.65b) ,

/PI = /PF -/Pit = /PF - f; provided that /P u = 0

the ratio of active power to apparent power, termed
the powerfactor A, Eq. (5.56a),

P (n) .S = cos /P I = cos /P F - 2" = SIn/P F

(5.75a),

(5.75b),

(5.75c).

and its orthogonal characteristic magnitude, the ratio of reactive power to apparent power

Q. . ( n)S = SIn/PI = SIn /PF -2" = -cOS/PF

The characteristic parameter velocity phase angle (or initial phase) /Pit reduces to

/Pit = /P u + f = f; provided that /P u = 0 (5.76a)

in the case of usually chosen zero-crossing excitation, thus omitting the initial phase of excita­

tion displacement /Pu '
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By simplifying the sinusoids of the components

cos2(m ft + /P u ) = cos2 ( mft +f)= -cos 2m ft

sin2(m ft+/pu) =sin2( mft +f) = -sin 2m ft

the actual scalar quantity S, reduces to

(5.76b)

l A A l A A
SB (t) ="2 FB usin /P F(1- cos2m ft) -"2 FB UCOS/P Fsin2m ft (5.74c).

'------r-----' ~

=p =Q

An other characteristic parameter, the rod force phase angle (or initial phase) /PF ' also can be

determined by directly reading off the phasor relat ions between the element forces, Fig. 5.3b, or
the real and imaginary parts of the (direct) stiffness, Fig. 5.4,

(5.77a) ,

(5.74d).
21 A A C - mm f

--FBu sin2m ft
2 I~(k _mm~)2 + (cmf )2 1

Basing on phasor magnitude relations between

Expressing now the actual active and reactive power components in a more explicit form the
pulsating quantity of actual power flow may be rewritten

1 A A cm f
SB(t)= - FB U

1

1(l-cos2mft)
2 ~(k-mm~) 2 + (cmf)2

rod force (5.78a) ,

and the element forces

spring force

damper force Fd = Kc . Ii = cmf . Ii (5.78b)
A A 2 A

mass force Fm = Km . u = - mmf . u

by the stiffnesses of the elementary components K, an alternative form for the actual scalar
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quantity S t is given by
1 A A

SB(t) = 2"Fd u(1- cos2mft)
'----v---'

=P

(5.74e)

(5.79a),

(5.79b).

expressing significant power parameters in terms of element force amplitudes related to the
phasor stiffnesses of the components,
the active power P

I A ~ I A ~ . I A ~ I A2 I ( A )2
P=2"FBucosqJ\ =2"FBu SIn qJF =2"Fdu=2"u »,«, =2" umf C

and the reactive power Q
I A ~ . I A ~ I ( A A) ~ I A2

Q=2"FB U SInqJI =2"FBu cosqJF =2" Fs + r; U =2"u mf(Kk + K m )

= !l?mf(k -mmi)

Complex Input Power (driving phasor power). The energetic system approach is
completely performed by determining the significant power parameters being as­
sociated with the complex power §.. Following Eq. (5.64b), 5.2.2 , this energy

function is defined as
the mean value of the conjugate ofthe complex quanti ty

tl+T

S~(jm f)=l- J IF~ (t)[u",(t)+u:(t)]dt
- T 2 " - -

II - (5.80)

=1F;., (1)[ it", (t) + it; (t) ] =s;
The steady-state power relation is readily expressed in explicit form by multiply­
ing together the pertinent phasor quantities assigned to the same point B, Eq.
(5.63a). Thus, the power product written in the preferred conjugate form of com­
plex notation, Eq. (5.63b), results in
the driving phasor power conj ugate

S· (1) =S~(jmf) =F; ~ =F; jmfE:
- -
I A. A I A.

= 2" FB ~ = 2" FB jmf il
(5.8Ia)

_.
being the product of the conjugate of the (r.m.s.) rod force phasor f B , Eq.

(5.50a), and the (r.m.s.) exciting velocity phasor i!. ,Eq. (5.50d).

Using the phasor relation between responding rod force and exciting displace­
ment at the same point, Eq. (5.70b)

FB=KB(jmf)~ (5.82)

together with the phasor of the exciting velocity, Eq. (5.69b)
• • A

!!=Jmf!! (5.83a)
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(5.85b)

(5.85a),

(5.8Ib).

(5.8Ic).

the energy function can be rewritten

S* ( • ) I K* ( . ) A*. A--.!!. Jmf ="2 ---.!!. Jmf ~Jmf~

I A* A. K* (. )
= "2~~Jmf ---.!!. Jmf

Combining the displacement phasors to the square of displacement magnitude

{ fl =Ifll 2 = iL 2 (5.83b)

and multiplying the frequency-response characteristic, Eq. (5.7Ia), by jmf the

(direct) dynamic stiffness ~~(jmf) (phasor stiffness) is fitted for the phasor

product of power (resultant vector) in direction . As a result
the converted (direct) dynamic stiffness

K~ '(jmf) = jmf K~ (jmf)

. -[( 2). ] [ .( 2)] (5.84)= Jmf k - mto; - J(cmf) = mf cmf + J k - mmf

is defined being abbreviated to ~~' (jmf) ' Using this related dynamic character­

istic the steady-state power relation can be calculated very conveniently express­
ing the driving phasor power conjugate, Eq. (5.8Ib), in
the explicit form

S* (. ) I A2K* '(' )--.!!. Jmf ="2 u ---.!!. Jmf

= t[cmf + j(k - mmn] I? . mf

The significant power parameters being associated with the conjugate of the com­
plex input power can be gathered from this complex parameter by decomposition
of power. Preferring the rectangular form the insight of stationary flow of driving
energy is represented by the real and imaginary parts of the phasor power conju­
gate. The first power component, termed
the active power P

P =t FB~ ~ =t[S; (jmf) + SB(jmf)] =Re [S~ (jmf)]

Re[ K; '(jmf)] = cmf . mf

I A2 [*,. ] I A2 I A 2
P="2 u Re KB (Jmf) ="2 cmf u ·mf = "2( umf) c

A A

is the product of the magnitude it of velocity phasor ~ and the component FB~ of
A* -

rod force phasor f B being in phase with the velocity phasor. The second power

component, termed
the reactive power Q

Q =t FBj~ ~ = ij [S~(jmf) - SB (jmf)] =Im[S~ (jmf)]

Im[K~ '(jmf)] = (k - mmi) · mf

I A 2 [* I . ] I (k 2) A 2Q="2 u Im KB (Jmf) ="2 - mar; u . mf
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~ ~

is the product of the magnitude u of velocity phasor u and the component F,a .:
- JU

~ . -
of rod force phasor fa being in quadrature to the velocity phasor.

Vector Representation ofComplex Input Power (driving phasor power). Taking up the vector
representation modified to power relations, 5.2.2, the explicit form of power state at the single
port of entry can be specified in aid of graphical interpretation, Fig. 5.5.

a

jQ

Fig . 5.5. Phasor diagrams of power geometrically interpreted by vector rotation and
~.

stretching applied to the conjugate of: a Rod force phasor fa ; b phasor stiffness

K; (jw r )
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~. ~

For visualizing the phasor product f B ~ in diagram representation the corresponding vec-

tor calculus of multiplying, Eq. (5.8l a), starts from the pair of individual phasor variables be-
~ .

ing figured in terms of the rod force phasor f B , Eq. (5.70b), respectively its conjugate, f B '

and the exciting velocity phasor ~ , Eq. (5.69b). The two (resting) phasors of the effort-flow

couple represent the corresponding sinusoids, Eqs. (5.70a), (5.69a). The operation of multiply­

ing is performed by rotation around the angle +1t/2rad and stretching about the velocity
~ ~ .

magnitude it= mrU being applied to the rod force phasor conjugate f B , Fig. 5.5a. As a

result the conjugate form of the complex input power can be figured in terms of the driving

phasor power conjugate ~~ (jm r), Eq. (5.8la). This resultant vector of the effort-flow prod­

uct represents the corresponding stationary flow of driving energy.
To impart the insight of energy interactions the vector representation takes advantage of in­

volving impedance relations (frequency-response characteristics) for power calculation. For
that reason the individual phasor variables are replaced by the response phasor ratio being

figured in terms of the (direct) dynamic stiffness f B(jmr) , Eq. (5.7 la), respectively its

conjugate f~ (jmr) , Eq. (5.7 lb), and the fa ctor jmr representing the first derivative of

phasors, Fig. 5.5b. Then the vector calculus ofmultiplying, Eq. (5.8 1b) may be interpreted as a

differentiating operation applied to the conjugate f~ of the response phasor ratio f B . By

rotation (around 1t/2 rad ) and stretching (about ca r ) the frequency-response characteristic

f~ (j ta r ) results in the converted dynamic stiffness f~' (j ra r ) , Eq. (5.84), the phasor of

which is perpendicular to phasor stiffness f~ (j mr ) . Thus, being fitted for the phasor prod­

uct of power in direction the required driving phasor power conjugate is obtained by an addi­
tional stretch about a constant multiplier amounting to half the square of exciting displacement

{1/2)u 2
.

The significant power parameters are specified either by modulus and phase or the resultant

constant phasor ~~ (j m r ) , designated as the apparent power SB and the negative impedance

angle - tp l' Eq. (5.75a), or, more conveniently, by the vector components, called the active

power P and the reactive power Q, Eqs. (5.85a,b). The real characteristic parameters SB' P,

Q span the (resting) right triangle of driving power in the complex power plane, Fig. 5.5a,b,
shaded areas.

Based on developing the force-to-displacement ratio (phasor stiffness) into the force-and­
velocity product (phasor power) the geometric interpretation demonstrates how to combine the
concepts of dynamic compliance and phasor power thus delivering an @-domain energetic
approach for the design of a mechanical vibration generator.

Complex Input Power and Frequency Normalization. In the operation of data
processing for obtaining frequency-re sponse characteri stics the normalization is a
tool of vibration data analysis being of considerable usefulness. This also holds

for the energy function in its explicit form ~~ (j ca r) turning out to be a conven­

ient data reduction method suited to graphical interpretation of phasor products in
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'l1[2S1h + j(1- 'l~)]
(5.87b)
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the frequency domain. For that, the complex power (phasor power) is adjusted in
variable and scale as shown in 3.2.11 and 4.2.5.

The constant quantity So at ca = Wo defines the static power factor. This real

particular parameter is identical with
the phasor power of the spring at resonance

S I F,A" ~ I F,A" . A 1K A" A I k A" A I k A2 I kFrmf A2
0 = ---; OU= ---; oJWOU= - k U WOU=- U WOU=- WOU =- mu

2J-- 2J- - 2 - - 2 - - 2 2

(5.86).

If the complex parameter ~~ (j WfWo) will be related to the multiplying constant

So the transformation results in

the normalized phasor produ ct ofpower (normalized resultant phasor)

S~(jw r!wo) F~ . ~ _ F~ ~ _.wr F~ _.wr K;{jw r!wo) K;'(jw r!wo)
So Fo" JZo - kit" wo~ - JWo Fo" - JWo «; «,

(5.87a),
or, as a product of the nondimensional response ratio of phasors (phasor stiffness)

X~ (j 'll) and the normalized differential factor j n,
the normalized driving phasor power conjugate

S;{jwr!wo) K;'(jw r!wo)
So «;

is defined being abbreviated toX~ ,(j 'll) .

The spectral decomposition into the rectangular power components is termed
the normalized active power

p{wrfwo) FB~ ~ I [ ", . , .] ["'.] 2
S =-y-A=-2 XdJ'lI)+Xk (J'll) = Re Xk (J'll) =2S'lI·'l1 =2s'll

o kH WoH - - -

(5.88a) ,
and the normalized reactive power

Q{wr fwo) FBj~ U

So ki'/ Wo ~
iJX~ '(j'll )-X k'(j n, )]=rm[X~ 'o n, )]=( I-'l~ )-'71

(5.88b).

polar Representation of the Complex Power (Nyquist plot)
Using the vector representation modified to power relations the phasor product of

power (resultant vector) ~ ' likewise its conjugate «.may be plotted for each

frequency variable assigned to a particular forcing frequency to = wf as a single

point in the complex power plane.
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The corresponding phasor power (conjugate), Eq. (5.63b), is assigned to a par­

ticular value of (the conjugate form of) the complex power §.' (j1O) = §.' (jlOc) '

The power frequency plot can be traced out in terms of polar coordinates by the
locus of the tip of the resultant vector, as the driving frequency lOc (henceforth

equivalent to 1O) varies from 0 to co.Thus, a transformation of the actual energy
flow Set) into the frequency domain is performed by sweeping out the total fre­

quency range. The frequency locus plot connecting all the points represents the
totality of power states (stationary flows of energy) for varying forcing frequency
1O = lOc . As a result the required energy flow characteristic in the cu-domain is

figured, called the polar frequency response locus of the complex power, in short
the polar plot ofpower, Fig. 5.6.

The graphical representation of power interactions referred to linear one-port
networks (general impedance elements interconnected) by a polar plot in the com­
plex power plane presupposes specifications of

- the pair of dynamic variable quantities (effort-flow couple) defined or meas­
ured as the individual conjugate variables ;

- the single point in space referred to the power state (effort-flow product) at an
energy port (input or output port) with terminal impedance specified.

The considered translational mechanical system, Fig. 5.3, is represented by a
steady-state power relation expressed in terms of the phasor product of force

(conjugate) i.' and velocity i: This relationship expressed in terms of an alge-

j Im~B*(jw)=
=jQ(w)=~Hk-mw

2)[/w

Re~B*(jw)=P(w)
1 A 2

=2(UW) c

arc ~B*(jW)=

=-rp1(W)

o

t
jlm~B*(jw)

Fig. 5.6. Phasor diagram and polar plot of power at the driving point (complex input
power)
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braic function is taken at the single port ofentry marked by the point B, where the
terminal dynamic characteristic is specified by (the conjugate form of) the direct

(or driving-point) dynamic stiffness (phasor stiffness) f~ (jz»e), Eqs. (3.188b),

(4.14), (5.71b).
In such a way uniquely defined the power frequency plot represents graphically

A'
the phasor products of responding rod force (conjugate) £..B' and exciting velocity

~ , or specified in a more explicit form by (the conjugate form of) related charac­

teristics, the converted phasor stiffnesses f~' (jwe), Eq. (5.84), multiplied by

(l/2)i? , Fig. 5.5a,b.

Thus, by connecting all the points for varying angular frequency we = W the

totality of driving phasor power (conjugates) ~~ (jwe) is gained, termed the polar

plot of the complex input power ~~ (jza),

Vibratory Specifications of Power by Varying Forcing Frequency
Basing on graphical methods mechanical system design derives benefit from polar
diagrams for judging the vibratory effects on machine structures in operation. It
has been shown that the polar representation of frequency-response characteris­
tics, in particular of dynamic stiffness, proves useful for selecting vibratory speci­
fications, 4.2.5.

In like manner the polar representation of energy flow characteristics is of
benefit to design, e.g., for proportioning of the entering energy flow to the flow of
energy being absorbed and stored in machinery. Considering the steady state of
energy systems the polar diagram of complex input power is appropriate for ex­
tracting performance criteria which are fundamental to energetic system ap­
proach, in that case to rating and optimizing the power supply required for vibra­
tory drives. Performance criteria in terms of calculated or estimated parameter
values related to energy functions may be called characteristic parameters of
power.

Specifying Significant Power Parameters. With regard to the rectangular form of
spectral decomposition the transacting components of stationary flow of energy
are specified by the real and imaginary parts of driving phasor power (conjugate)

~~ (jwe), Eq. (5.63b) .

The phasor product of power (resultant vector) is associated to a single forcing
frequency, and thus assigned to one point of frequency locus plot. The spectral
components of the power product being identical with the components of the re­
sultant vector are related to the individual phasor variables by multiplying the ve-

locity phasor magnitude it by the in-phase component FB~ ' respectively the

quadrature component FBj~ of the constant rod force phasor. Thereupon, the

components of energy flow entering the system follow from the active power P,
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Eqs. (5.66a), (5.85a), and the reactive power Q, Eqs. (5.66b), (5.85b), being either
the in-phase or, respecti vely , the quadrature component of driving phasor power

(conjugate) ~~(jmf).

If forcing frequency is allowed to vary within the frequency range of interest
the change of the significant power parameters, P and Q, can be gathered by the
frequency locus plot followin g the chan ge of the components of the resultant
vector. The assembly of vector components appertaining to the totality of driving
phasor power (conjugates) is equal to the assembly of rectangular coordinates
(with respect to the complex power plane).

One problem of system design in the frequency domain arises from predicting
performance criteria for a vibration generator involving not only vibrations but
also the transformation and flow of energy in system-to-system interactions. Sup­
posing a simple harmonic vibration the phasor relations, Eq. (5.85a,b), permit to
determine "dependent on frequency" the dissipative and the idle flow of energy ,
which is to be delivered, respectively to be compensated by the power supply for
generating or maintaining a presupposed constant operating motion s , or v (con­
stant-amplitude motion ).

Specifying Significant System Parameters. For illustrating frequency effects on
energy funct ions the normalizing transformation of complex power (phasor
power) is used being a convenient data reduction method suited to graphical inter­
pretation in the frequency domain. For that , the phasor product of power is ad­
justed in variable and scale as already demonstrated, Eqs . (5.86), (5.87a,b).

The normalized driving phasor power (conjugate) is figured in terms of an ad­
justed resultant vector defined by the "nondimensional phasor product" of power

X~' (jl7I), Fig . 5.7a.

The number of parameters is diminished by combining element parameters to
system parameters, so that the new function, Bq. (5.87b), is expressed in terms of
only two quantities, the frequency ratio T1 and the damping ratio ~. Thus, the effect

of the performance criterion for related energy dissipation ~ on the energy flow
characteristic will be represented graphically in the normalized form by an ad-
justed (data-reduced) polar plot for a fixed amount of damping as T1 varies over
some driving frequency range , Fig. 5.7b.

Response Data Plotting. The polar plots of normalized complex power are shown in Fig. C.l
of the Appendix C.

The new coordinates being in general polar coordinates of magnitude and phase (Nyquist
plots) are replaced by rectangular (Cartesian) coordinates assigned to the real and imaginary
parts of the complex energy function, Eq. (5.87b). By this, the graphical representation in the
complex power plane gives the preference to spectral decomposition of power in the convenient

rectangular form. The coordinates of (vector) components are uniforml y scaled in absolute

numbers making it possible to estimate at each fr equency ratio 1] the significant power pa­
rameters, designated as normalized active and reactive power, Eqs. (5.88a,b).

The effect of the system parameter damping ratio ( on the energy fl ow characteristic (com-

plex power at the driving point or complex input power) ~~ (j m) is represented graphically in
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S *(J'~) ~ * -e-
X *'(' )- -B W o _EB Jd.
-k J171 - S -kD* ta Do _ 0-

a

o

b

S*('~)
x*'( ' ~=-B JWO_k Jl7J S

o

Fig. 5.7. Adjusted diagrams of power at the driving point. a Phasor diagram of normalized
driving phasor power; b polar diagram of normalized complex input power

the normalized form X~' (j17) by a set (or family) of polar plots for various amounts of

damping. The damping effect is indicated by the change in normalized active power compo­
nent, i.e., by the change in the dissipative flow of energy.

Specifications of Polar Plots of Power. A polar plot (Nyquist plot) is specified by the curve
shape, the frequency scale, and the shape signature at high and low frequencies as treated in
3.2.11.

Respecting the polar representation of a set of normalized frequency characteristics of
power the adjusted curve shapes are defined by the loci (hereat higher parabolic plane curves)

for selected damping ratio values S = const . and the frequency scales are outlined as inter­

secting lines running parallel with the abscissa for selected frequency ratio values 17 = const .
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The shape signature is portrayed by a locus starting perpendicularly to the real axis from
zero at '7=O. Assuming a resistance or lossy element (damper) as existent the dissipative

flow of energy delivered by the power supply (source) is absorbed by the network (generalized
impedance).

Thus, the real parts of the loci, representing the normalized active or av erage power, only
can be positively valued for a passive system. On the average, more energy flows into the net­
work than is returned to the source. That is to say, the magnitudes of the loci (lengths of ad­
justed phasor powers), representing the normalized apparent power , are greater than or equal
to their real parts for all frequency ratios. This performance criterion is according to the condi­

tion of power factor A. ~ I, Eq. (5.56b).

The imaginary parts of the loci, representing the normalized reactive power, indicate the
extent to which the source participates in energy storage interaction between the capacitance
and inertance element (spring and mass). Depending on frequency ratio this idle flow of energy
can be positively or negatively valued. The latter case makes it physically possible for a passive
network to supply the source. Under condition of minor resonant vibration '7< I the average
energy stored in the capacitance (spring) exceeds that stored in the inertance (mass), thus the
sign of reactive power is positive Q> O. Under condition of major resonant vibration '7> 1

the exceeding of energy storage, respectively the sign of reactive power are vice versa Q< 0 .

Power Component Frequency Plots
A common alternative to the frequency locus in the complex ~(j(i))-plane (com-

plex power plane ) results from the graphical repre sentation of rectangular fre­
quency responses of power, i.e., by portraying the complex power, Eq . (5.8I c),
separately by the power components versus frequency . The pair of real-valued
frequency response curves of power is called the power component frequency
plots.

Response Data Plotting. The power component frequency plots of the normalized active and

reactive power Re [X ~ I (j '7)] , respectively 1m[X ~ I (j '7)] , are shown in Fig. C.2 and C.3

of the Appendix C.
The new coordinates being rectangular axes of either real part or imaginary part versus fre­

quency have a natural scale on both axes. The rectangular coordinates thus generate coordinate
frames for a pair of real-valued frequency plots of power as natural curve charts:

Respecting the rectangular representation of a set of normalized power components the pair
of adjusted curves is defined by the normalized active and reactive power, both for selected

damping ratio values t; = const and for a natural range of frequ ency ratio, the "nondimen-

sional" bandwidth starting from zero /),'7 = '72 - '71 =2,5 - 0 =2,5.

Significant Frequencies ofResonance. The compensation of energy transactions
across the boundaries of the system (mechanical circuit) depending on frequency
is to be performed by the power supply (mechanical source). The geometric locus
of the maxima of idle energy flow (largest swapp age of energy between source
and circuit) according to greatest values of the imaginary parts for all amounts of
damping (horizontal top line) indicate s the distinct frequ ency ratio

'7max, 1m = 0,5774 (5.86)

referred to the maximum of normalized reactive power Q = Qmax .
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At the singular value of forcing frequency lVr = lVo, defined in 3.1.2 as the

condition of resonance, the magnitudes of the loci (adjusted phasor powers) are
equal to their real parts (normalized active power) for all amounts of the damping.
This is a consequence of the fact that, on the average, the amounts of energy
stored in capacitance and inertance elements (spring and mass) are equal. Then
resonance occurs characterized by the phenomenon that the imaginary parts of the
loci vanish, and the performance criterion of power factor equals unity A = I, Eq.
(5.56b). The resonance frequ ency ratio 170 = I , Eq. (3.46a), referred to zero reac­

tive power Q = 0 , is associated with the horizontal direction of phasor powers.

The geometric locus of normalized complex input power in resonance (no com­
pensative energy transaction) coincides with the (positive) real axis.

Qfactor and Low-loss Network. Since capacitance and inertance elements merely swap energy
back and forth between them the source is not called upon to participate in the idle flow of en­
ergy. This energy state condition specifying resonance relieve s the source from compensative
energy transactions, and is referred in electric power circles as power-factor correction.

Besides resonance the energy flow behaviour in the vicinity of resonan ce is of special inter­
est. Considering the bandwidth or half-power method, 3.2.11, the Q factor (quality factor) has
already been defined as one-half the reciprocal of the damping ratio, Eq. (3.39c). This perform­
ance criterion commonly used with reference to a lightly damped system can be approximately
defined as 21t times the stored total energy to the energy dissipation per cycle . Expressed in

terms of

the Q factor can be interpreted on an energy basis relating 21t times

the maximum of circuit energy storage
A I A2 1 2 A2 I ~ 2 A
Ep = "2 ku ="2mlVou = "2 mu =e;

and the energy dissipated per cycle

11 Ed =tclVri? = P·(T/21t)

(3.87)

(3.88a)

(3.88b).

The energetically based definition, Eq. (3.87) , not only provides an independent approach to the
estimation of efficiency and economy of operation (useful in situations where parameter calcu ­
lations are difficult or not feasible) but also illustrates the meaning of low-loss or high-Q net­
works, as called in electric circuitry, [16] . Namely , it is one in which the loss per cycle is small
compared with the peak value of the total stored energy . In order to obtain a circuit with a sharp
resonance curve, one must strive to obtain as large an energy storage as possible relative to the
associated loss per cycle . This is utilized for mechanical vibrators taking benefit from the reso­
nant effect.

Driving Power of other Types of Vibrators
The calculation of power flow using the phasor power concept has been exempli­
fied by a directly driven vibrat ion generator system. The usefulness of the energy
approach basing on the explicit form of complex power proves for any type of
vibration generator. So the reactive-type vibrators getting benefit from the reso­
nant effect are energy systems the steady state of which is illustrated in a distinct
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form by use of phasor power calculation. As a result the energy flow characteris­
tics are available which may be graphically interpreted by the polar representation
of the complex power (Nyquist plots) , [120], [121].

Response Data Plotting. The polar plots of normalized complex power are shown in Fig. CA
and C.S of the Appendix C.

The effect of the system parameter damping ratio t; on the energy flow characteristic is rep­
resented graphically by the normalized complex power at the driving point by a set (or family)

of polar plots for a fixed value of damping ratio (;.

Beyond the two quant ities T) and t; a third system parameter must be introduced specifying

the stiffness ratio K of the reaction type vibrator with an additional spring k2 , respectively the

mass ratio J1 in the case of adding an unbalanced rotating mass m 2 to the vibrator.
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Time-history Curves
of the Displacement Response

and of the Force Excitation

Free Vibration Histories
Complete Response Histories

Fourier Spectra
Time-response Characteristics

Shock Response Spectrum
Random Data Plots

Performance Criteria

Steady-state response specifications
Transient-response specifications
Statistical response specifications



www.manaraa.com

Time-history Curves 319

Displacement Time History
s(r) / so- r - curve

Initial-condition free vibration (transient motion)
ofthe underdamped oscillator, Eq. (3.23b),

starting from a specific initial value ratio 50 / (woSo) = so' /So

I
50 = 1
So

~= 0,3

o if

Transient-response specifications

Normalized
time constant (relaxation time) r,=T;wo= 3,33
damped natural period rd=~wo= 6,59

Logarithmic decrement A=rir,= TcJ/T; = 1,98

Fig. A.!. Free vibration (transient motion), underdamped oscillator
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o

Displacement Time History
s(.} / so- i -curve

Initial-condltion free vibration (transient motion)
ofthe overdampedoscillator, Eq. (3.27b),

starting from a specific initial value ratio sol (woso) = so' Iso

'51=~+vp:1

T52=~-~

Transient-response specifications:
Normalized

time constants '51=T.1 WO=2 ; '52 =T52wo= 0,5
duration of transient motion ~ 4'51 = 8

- - - Equilibrium approach: 8(4'51)/80=8(8)/80= O,0366~ 0

Fig. A.2. Free vibration (transient motion), overdamped oscillator
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Displacement Time History
s(r) / so- r -curves

Initial-conditionjree vibration (transient motion)
ojthe overdamped and the critically damped oscillator,

Eqs. (3.27b), (3.29b)
Effect of initial value ratio so/(woso)= s~/so on time-histo ry curve

[I] +10

r---O

o

+1
[I]

Fig. A.3. Free vibration (transient motion), over- and critically damped oscillator



www.manaraa.com

322 Appendix A

Response Time History
s(,) / Sstat-,-curve

Complete displacement response (combined motion)
ofthe underdamped oscillator, Eq. (3.14b),

caused by a transient harmonic excitation F(,)/F, Eq. (3.35a),
(dash-and-dot line)

beneath the resonance condition wf/wo=rf1 =1, i.e.,

for 7] 1<Iv'1='F1or 7]1<1 duetolv'1='P I==1 for ~«1

s.(r) St max -ttt,
--+--e
SSlat SSlat

s _I G(j7]l) 1_ A(7]1)
Sstat - G(O) - A(O)

_ 1
-IJ(1-7]12)2+(2~7]ll

Transient-response specifications:
',= T, Wo=20 ; 'd=~ wo= 6,29 , see Fig. A.I

Steady-state response specifications: ~

Magnification factor §/sstat =ks/F =1,04
Normalized time lag (phase shift ) ' 'l/= T'l/ wo=0 ,104

Fig. A.4. Complete response (combined motion), underdamped oscillator

I/bF= :
~=O,05

711=O,Z

{I] +65
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Response Time History
s(r) / Sstat- r -CUNe

Complete displacement response (combined motion)
ofthe overdamped oscillator ,Eq . (3 A5b),

caused by a transient harmonic excitation F(r)/F: Eq. (3.35a) ,
(dash-and-dot line)

beneath the resonance condition wf/wo= 'f/ =1, i.e.,

for 'f/1<1,
Fir}

F

Flrl

to,05 t1 J-:.----......
[I] [lj I ~.~>-~

+r =+ C{JOF
OF n,
I

s IT}
S$Lol

i f) _ t'
rOF-T

~ = 1,6
1]1 = O,l

Transient-response specifications:
r s1=Ts1wo=2,85 ; rs2=Ts2wO=0,35. see Fig .A.2

Steady-state response specifications:
Magnification factor s/sstat=ks/F =0,87
Normalized time lag (phase shift) r ljl= Tljlwo= 2 ,94

Fig. A.5. Completeresponse(combinedmotion), overdamped oscillator
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Response Time History
s(r) / Sstat- r -curve

Complete displacement response
ofthe undamped oscillator, Eq. (3.4~c) ,

caused by a transient harmonic excitation F(r)/F, Eq. (3.35a) ,
at frequency in resonance 'YJ1= wf/Wo=1

+30tf /1

sir)
Sstat

Resonance Phenomenon
(unstable forced motion)
Normalized

forcing period r, =7;wo= 6,28

Fig. A.6. Complete response , undamped oscillator

[IJ +50
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Response Time History
s(.) / SSlal- c-curve

Complete displacement response
ofthe undamped oscillator, Eq. (3.48b),

caused by a transient harmonic excitation F(.)/F, Eq. (3.35a),
at a frequency slightly different to resonance '11 =wf/Wo';::; 1

t
stn +11f
Sstat [I]

~
~

strl
Sstat

/' -I'-. /'-~

/ /

1\ / 1\ /
1\ / 1\ /
~~ ~~

--.----t-. - - - - -? ..0-

j

/
/

+1 It

~I!
II

(<(

(<(

o~

\
\

-,
--'-------+-.-----~ --

~'S = 12 n
-YJ1

=n/ti.YJ 1

Ir
. r=~

m 1-ti.YJ1

';::; (2n)/YJ1

Beating Phenomenon
Normalized

"period" of beat 's=Tswo=62 ,83
"period" of motion 'm=Tmwo= 6,98

Fig. A.7. Complete response , undamped oscillator
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Fourier Spectrum (line spectrum)
£(wn) -wn-curve

ofa pulse-train excitation (square wave)
Amplitude spectrum I£R1(Wn)1=Y2 ~1(Wn) ' Eq. (3.66b)
Spectra of the "amplitudes", ?fth~ real part Re £R1(W n) = CR,~' (wn)

T imagmary part 1m£R1(Wn) =CR1(wn)
I~ ((jn1I,Re ~,~,Im, tWn)

+FR1(t)=+lcol=+Fal2=+1.
CFJ

'-1=
a If-11

Phase spectrum

.!l.,..
arc f (Wo)

!l..3 +1'
t a

~11

c.

Fig. A.S. Discrete frequency spectrum of a periodic excitation force
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Fourier Spectrum (line spectrum)
If (wnlw 1Wlcol-( wnlw1) -curve

ofa pulse-train excitation (square wave)

Amplitude function IfR1nl / ICol=CR1n!co, Eq. (3.67b)

o 1 3 5 7 9 [/J 11

Fig. A.9. Discrete magnitude ratio spectrum
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Fourier Spectrum (line spectrum)
ofa pulse-train excitation (rectangular pulses)

Effect of duty cycle it =r:rJTon amplitude spectrum IQR
1
(n)1

for equal mean value (average) FR(t) = Fait = 1 [F]

n ___

n___

[/] 3
'I1·n ___

z

2

FR
1
tt)

~=~-f

[t] 1"
o

+1

+1

-1U~~ 0 D:~[1] -,

I-lDr-l
T

Fig. A.tO.
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f
arcF(w)

,...-., +r"
[I]

t
IE(w)I, Ref{(,)),lmfIJ)

+'RiO =+Fo f'o =+1
[F.t]

o11
+~8l tf~566 .,. ~~O

f~-t~t~ ~,t ~t~~' ~:-;-
_~ _~ _a +2T +~ +~

t'. "f; t'o to to 2'0

arc fRiO (CtJ) =¢R
iO{CAJ)

,Eq.(3.72b)

FourierSpectrum~ontinuousspectrum)

E(w)-w-curve
ofa single-pulse excitation (rectangular pulse)

Amplitude density function IER1o(w)1 =AR10(W), Eq. (3.72a),
Spectra of the "amplitude densities" of the real part Re ER10(W) =RR10(W)

imaginary part ImER10 (w) =XR10(W)

Phase spectrum

+1

Fig. A.n. Continuous frequency spectrum of an aperiodic excitation force

CcJ-s GJ-z (,,}-1

[t- i t +37.699
IJ 'I

CUtS c.J+.
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Fourier Spectrum (continuous spectrum)
IE(w/w1)I/Fo-w/w 1 - curve

ofa single-pulse excitation (rectangular pulse)

Amplitude dens ity function AR10(%)/ tR1O• Eq. (3.73)
1

t r}Jl,;;I';;1·111~~I.~lililllill1£ (~)I _~~. ': =::\ .
F(o) Q8 -.. . ., .

o
1,'t3300

o 2'll:
I

41r 6'lr
I

817: 1017: [/J 121r
(.)

'to(.) = 27C W1 ---.

Fig. A.12. Cont inuous magnitude ratio spectrum
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FourierSpecyum(continuousspeCYum)
ofa single-p ulse excitation (rectangular pulse)

Effect of pulse duration Toon amplitude density function IE R10(w)1

for equal pulse area (impulse) ' R10=F;,To=1 [F· t]

f-t"w--

f·-1.. 4J __
zrt

IF~10(CJ)1

IR,o= 1
[F·fl

fIFRtO (CU)/

1R.1o" 1
[F·cl

f-

t--

t---

[t} +1

[t] +1

[l] +~

t
IF~o~)1

IRf . ..1
(f.t)

+1

-£,5 0

!--t"o-1
_!L

2

+1

[F]

+Fo :a+1....,...--......lt---..,

Fig. A.l3. Change of pulse duration on an aperiodic excitation force
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Graphical Interpretation of the Convolution Integral,
Eq. (3.92b), exemplified for

a lightly damped system: "weighting" function g('r), Eq. (3.83b),
and a constant-slope rising excitation: ramp force function F(r) =~u1(r)

F(r)=~ u1(r)=(Fo/r1)u1(r)=(Fo/r1)r for r ~O

F(r)

\ /T---
F(-T)

o

t
F(r)

Shifting

Reflecting
("Folding")

r--

9 (-i)

t
g(7:)

T--

grrJF(t-tj
t

s(t) =fg(t)F(f-t) dt'
o

t
g(t)F(t-r)

o

Multiplication
and

Integration

T--

r---

9 (t-t)

9 (t-r)F{'L)
t

s(tl1y(t-r) F(r) at'

o

t
g(t-r)F(t")

Symmetry of integral transformation in F(t) and g(t)

Fig. A.14. Convolution integral or superposition integral
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---
f(T,,)-f(t)

+t'n +'1:11tf
I

=+t t~

+tiI +'1:,1+1

I I
vth rectangular-pulse response

Approximate Evaluation of the Convolution Integral
Series of rectangular pulses , Eq. (3.95a)

f{t'iI)rt.dt-t'iI)

+f{t'gJ

t--­
Approximated continuous-time system response, Eq. (3.96a)

I t'n I I
y(t)1I: 2:/{7:oJ) Yrb~t-'"Q)·4't

'1:~=O

o

I
y(t)

o
+toJ +t'n=+t t--

Fig. A.IS. Pulse approximation of an arbitrary excitation
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Approximate Evaluation of the Convolution Integral

Series of rectangular steps, Eq. (3.95b)

-

+'L)1 t--
Approximated continuous-time system response, Eq. (3.96b)

Y(lJ=£ A~;ll)YIl.ll-r,,}A r
ra1=O AlIilllillWLllUllll~i1r"""'"

Af
+1', +'rz +t'J +t"-1 '#-7:~

I
vth rectangular-step response

o

o

o

t
Y(t)

Fig. A.16. Step approximation of an arbitrary excitation
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Time-response Characteristic
s(r) / (F..1/Viii/() - 7: - curves

Unitpulse response (weightingjunction)
ofthe damped oscillator (second-order-system),

Eqs. (3.83b)O.84b);
caused by the unit pulse excitation 0(7:)

(dash-and-dot line)
Effect of damping ratio ~ =c /Cc on time-response curve

t !
FlrJ J-::fJ =6{r:) -%(7:) =g(7:)

"bF"1 1 "1
+1. ~-1

.sn:-rr.JgF"1 If-•..o-..-'on.

(~) I
~w
~

o

Transient-response specifications:

Normalized Relative

peak time : 7:p = wotp ::::: 21k, ;maximum: ViTi/( S6,max
=smax/ (F./v'riIK)

1 -~(21V1-{2h

=-'v'1-{-21 e

Fig. A.17. Idealized force pulse-motion history
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Band for
settling time

So('r) =h('r)

+5

'r.(~=O ,3)

Time-response Characteristic
s(r) I sstat - r - curves

Unit step response
ofthe damped oscillator (second-order-system),

Eqs. (3.l04b,c) fof'l'o=O
caused by the unit step excitation uo(r)

(dash-and-dot line)
Effect of damping ratio ~ =c Icc on time-response curve

FIr} • u ft') ks 10-). sIr)
FD ' 0'" .sstat

­.....
I.
E

!If
~

'rr(~=O,3)

o
+0,1 _'-'..r

+0,5

t1
+0,9 -+---,

Time-domain (transient-response) specifications:
Normalized Relative

peak time: 'rp =wotp= ..j 1t 2 ' maximum overshoot :
I 1-~ I ' kSo,max- 1

delay time : id=Wotd= (1+0,7~); =(smax l ~t)-1

rise time : r, =Wot,= (O,8+2,~) ; -~/IJNfI
=8

the latter two for 0 ~ ~~ 1 ;

2% settling time : 'rs=wots= (4/~)=4'rSl for~<O,7;

Fig. A.IS. Response to an ideal shock excitation
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Response Time History
s(tho)/ sstat- tho-curves

Complete displacement response (shock motion)
ofthe underdamped(and critically damped) oscillator,

Eqs. (3.101c),(3.104b),
caused by the rectangular pulse excitation F(tlro)/Fo

of short duration (small period ratio 'Co/To)
(dash-and-dot IiIie)

Effect of damping ratio ~=de; on time-history curve

Normalized
time range of

I
residual
response

primary
response

o

~

t 1'2
Fo .!R._.1.

[I] ~=O
To t

or

4frl
0, OS

r. 0,1 t'o~. =r
0 qz

s (;;)
0,3
os

1
~u +1 y'fr

Fig.A.19. Response to a rectangular shock pulseexcitation
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Response Time History
s(tho)/ sstat- tho-curves

Complete displacement response (shock motion)
ofthe underdamped(and critically damped) oscillator,

Eqs. (3.101c),(3.104b),
causedby a rectangular pulse excitation F(t/io)/Fa

of long duration(largeperiod ratio ralTa)
(dash-and-dot line)

Effectof dampingratio ~= etc, on time-history curve

t
~+Z "stat

[I] !P... Z

F ft.) To
or

F;- f'ot.>,,-'f1t

~
,sstat

11

primary
response

Normalized
time range of

I residual
response

Fig. A.20. Responseto a rectangular shockpulseexcitation
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Shock Response Spectrum
s max (Tol To)/sstat - Tol To -curves

Response maxima (shock motion peaks)
ofthe undamped oscillator

caused by a rectangular pulse excitation F(t/r:o)/Fo
Primary shock spectrum Smaxprim I Sstal' Eq.(3.102b)

Residual shock spectrum Sstat res I Ssta! ,Eq.(3.102a)

Maximax shock spectrum Smax I Sstat

( dash-and-dot-line )

2t [I]
smaxprim (Yo)

S5tat

Smaxres (~)
oS stat

5 max (~
.sstat

1
6" i

1

Range of period ratios for s max

coincident with:
Smaxprim Smaxres

Period rangeof shock isolation
(designated for reduced motion transmissibility:

(s....)s....)<1 )

Fig.A.21. Displacement Shock Response Spectrum to a rectangular shock pulse excitation
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Autocorrelation Curves
!Pss (%I-rl) - %I-rl-curves

Response autocorrelation function at displacement
ofthe underdamped oscillator, Eq.(3.130b)
caused by a white noise excitation process
Effect of damping ratio ~=c1cc on AC-curve

~=O,D5

Statisticalresponse parameter:

Normalized , \ I , l{f; 1
response mean-square value: !Pas,w(O)= Sr/(4kViiiK)= I

I \VI \ I
Fig. A.22. White random vibration and its autocorrelation function
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Power Spectral Density Curves
ass (1]) - 1] -curves

Response auto-spectrum at displacement
ofthe underdamped oscillator, Eq.(3.127b) .
caused by a white noise excitation process

Effect of damping ratio ~=c/cc on PSD-curve

20
[I]

t
o.s(1])

~=o

0,05

0,1

-3 -1 +1

1L-_--:;::7 o.s,w (1])

[I] 13

Fig. A.23. White random vibration and its auto-spectral density



www.manaraa.com

342 Appendix A

Probability Density Distribution Curves
p(P)- P -curves

Response probability density function at displacement
ofthe underdamped oscillator, Eq.(3 .133b),

caused by a white noise excitation proc ess
Effect of damping ratio ~=clcc on PDF-curve

-6

t
p(p)

0,45
[I]

o +1 [/J t6

• Eq. (3.134c)

Fig.A.24.

P=Pw= 1v'4-'1
Statistical response parameters: kYiiiK
Normalized

response standard devation (r.m.s.value)

A.pw=IVpw2(~1=Pw.91f=1yt'1/~ • Eq.(3.134b)
response median

"'PW=P(Pw=O)=1yt'l/lv'27tI
White random vibration and its probability density function
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Frequency Response Plots

Dynamic Compliance Plots
(Nyquist, Nichols, Bode plots)

Dynamic Stiffness Plots
Mobility Plots

Mechanical Impedance Plots

Performance Criteria

Frequency-response specifications
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Frequency Response Plots
Im[Xk(j7])] - Re [Xk(j7])] - curves

Polarfrequency-response loci (Nyquist plots)
ofthe normalized dynamic compliance ofa structure

Xk(j 7])=g ii(jwlwo)/Ck ; Eqs. (3 .186a,b),(3.198c)
within the range of damping ratio (0=) [;~ 1

-2

-7j

t -Bj
e-,

"'":.:::;,
~I

~ -s,......

_600

7],(=7]G)=O,998

o
~
I

o

~I

Fig. B.1. Polar plots of driving-point dynamic compliance, elements in parallel,
excitation force external or via spring
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Frequency Response Plots
Ig[1'k(j1J)]- arc ['yk(j1J)] -curves

Logarithmicfrequency-response loci (Nichols plots)
ofthe normalized dynamic compliance ofa structure

Ig[1'k(j 1J)]=IgLQii(jW!WO)! Ck] ; Eq.(3 .205)
within the range of damping ratio (D=)~ ~ 1

t

-150· -120· -90· O·

+20

dB

+10

-fO

-JO

arc ~ fj1)) -­
Fig. B.2. Log magnitude-phase diagrams of driving-point dynamic compliance,
elements in parallel , excitation force external or via spring
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Frequency Response Plots
IgIXk(j1]) I-Ig 1] - and arc [Xk(j1])] - Ig 1] -curves

Logarithmicfrequency plots (Bode plots)
ofthe normalized dynamic compliance ofa structure

Ig[l~: k(j1])]=lg L~ii(jW/Wo)/Cd ; Eq.(3.205)
within the range of damping ratio (0=) t;~ 1

Logarithmic gain (magnitude ratio in decibel)

bbH±H±H!---+ +'20

dB

+10

l1li110

-Jl

Phase angle (phase difference)
0° "*'===-=T""";'""'l"::=..-.=1==n:;:;:::t':1;;<-, a

[/]

~ Jilllill"'-180° .

qt

t

[/] 10

Y=%o-
Fig. B.3. Magnitude and phase plots of driving-point dynamic compliance
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Frequency Response Plot
Ig['yk(j'l)] -Ig n-curve

Logarithmic gain (magnitude ratio in decibel)
ofthe normalized dynamic compliance ofa structure

Ig [.Yk(j'l)]= lg LQjj(jwlwo)/Ck ] ; Eqs.(3 .214a,b),(3 .215a)
for the value of damping ratio ~= 0 ,2

1-10

oAsymptotes:

Tj-'O
19IYk 012 11-'

Ig1=0

-10 Tj-' 00

IglYk (j7]II-+
19 ;z =-Zlg TJ

-lO

111
120
dB

correction gain
at 'l='lcf=1
(dependent on ~)

icorner frequency n«

cf

oz

2 -t±±±±:t±

1

5

10

0.1

lli(j7JJI
I~k(1l11

I~clllJ I
IYkm (1JlI

Frequency response specifications:

Low-frequency asymptote of slope 0
High-frequency asymptote of slope -2 or -40 dB/decade
Comer frequency ratio 'lcf =1
Correction gain IglYkcldB=7,96 dB ; Eq.(3.2l5c)

Fig. 8.4. Magnitude plot and straight-line approximation of
driving-point dynamic compliance
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/T} ·0,6

+-:.L.:'--~--+---..j"J..--",.L:::.--I----:A=---I-I--I----+ ~
C
Q

o

o 7]o"t{resonan . phase
.~

--jlmXk f;)} ~
- +
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Frequency Response Plots
Ig[Kk(j7])] - arc [Kk(j7])] -curves

Logarithmic frequency-response loci (Nichols plots)
ofthe normalized dynamic stiffness ofa structure

Ig [Kk(j7])]=lg[~ii(jwlwo)IKk] ; Eq.(3.2I 6)
within the range of damping ratio (D=)~;§ 1

TO

0,1

x l

05 -

T80 Q

arc~(j"9)-

+~o

dB

+30

+20

+10

o

--TO

- 10

Fig. B.6. Log magnitude-phase diagrams of driving-point dynamic stiffness ,
element s in parallel , excitation force external or via spring
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Frequency Response Plots
Ig l~k(j1'])I-lg 1'] ':' and arc [~k(j1'])] - Ig 1'] -curves

Logarithmicfrequency plots (Bode plots)
ofthe normalized dynamic stiffness ofa structure

Ig[~k(j1'])]=lg LKii(jwlwo)/Kk ] ; Eq.(3.216)

within the range of damping ratio (0=) ~ ~ 1

Logarithmic gain (magnitude ratio in decibel)

_t10

~5.
2

1

:l:!:I:!:H:l:I~+ +20

dB

+10

o

- 10

0,1
0,2 5

-20
ql qs 2 (/] 10

r~--
Phase angle (phase difference)

180
0

- - n:

t [/]

- J(S 90
0

2
:..;""1
~
l:)

0
1},2 o,s 1 2 5 [/] 10

F:~ --0

Fig. B.7. Magn itude and phase plots of driving-point dynamic stiffness
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Frequency Response Plot
IgIXkO'l)1 -19'l-curve

Logarithmic gain (magnitude ratio in decibel)
ofthe normalized dynamic stiffness ofa structure

Ig[Xk(j'l)]=lg [Kii(jwlwo)IKk ] ; Eqs.(3.216a-c)
for the value of damping ratio ~= 0,2

o Asymptotes:

Tl---"O
IglXk (j1])I---.

19 1:.0
-10

TJ-'oo
19! Xk (j71JI--.

19 TJl "'Z 19 TJ

-20

tu
11 =W o

correction gain
at '1='lct=1
(dependent on ~)

0,50,2Q1

0,(

0.1

10 eo
t [I] dB

IXk{j1J]I 5

IXkJ 1J}I
+10

IXk C{1J)I
IXkm{1JlI z

Frequency response specifications:

Low-frequency asymptote of slope 0
High-frequency asymptote of slope +2 or +40 dB/decade
Comer frequency ratio 'let =1
Correction gain IgIXkCldS=-7,96 dB; Eq.(3.2l5c)

Fig. B.8. Magnitude plot and straight-line approximation of
driving-po int dynamic stiffness
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Frequency Response Plots
Ig[X~(j1J)l- arc[X~(j1J)] -curves

Logarithmic frequency-response loci (Nichols plots)
ofthe normalized (mechanical) mobility ofa structure

Ig[X~(j1J)l=lg[j1JXk(j1J)l=lg [Xii(jW/WO)/Ykl ; Eq.(3.190)
within the range of damping ratio (O=) ~ ~ 1

-20

-1.0

-30

o

-10

+10

-e-rr- ........e-r-r- +20

dB

0,1

10

0.01

t

+300 +60 0 +900

arc '!1,'(jTJ) -­

Fig. 8 .9. Log magnitude-phase diagrams of driving-point mobility,
elements in parallel ,excitatio n force external or via spring
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Frequency Response Plots
IgIY~(j1])I-lg 1]- and arc[Y~(j1])l- Ig 1] -CUNes

Logarithmic frequency plots (Bode plots)
ofthe normalized (mechanical) mobility ofa structure

Ig [Y~(j1])l=lg[j1]Yk(j1])l= Ig [Y;;(jwlwo)IYol ; Eq.(3.190)

within the range of damping ratio (0=) ~ ~ 1

Logarithmic gain (magnitude ratio in decibel)

+20

dB

+10

o

-10

o

+2fz
[/]

2 5 (/J 10

r*o--
Magnitude and phase plots of driving-point mobility

Phase angle (phase difference)
+900

=-",r-=±rr

Fig. B.10.
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Frequency Response Plots
Ig[gk(jrJ)] - arc [gk(jrJ)] -curves

Logarithmic frequency-response loci (Nichols plots)
ofthe normalized mechanical impedance ofa structure

Ig[Kk(jrJ)] =Ig[(-j IrJ)Kk{jrJ)=lg [~ii(jwlwo)/Z k] ;Eq.(3.191)
within the range of damping ratio (D=) ~;:i 1

i

100

10

qs

0,2

0,1

• +

+/,O

dB

+30

+10

o

-10

-so: -60 0 -300 0 0 +30 0 +60 0 +90 0

urcXk fj~)­

Fig. B.11. Log magnitud e-phase diagrams of driving-point impedance,
elements in parallel, excitation force external or via spring



www.manaraa.com

356 Appendix B

Frequency Response Plots
Ig,gk(j1])I- Ig1] - and arc [gk(j1])]- Ig 1] -curves

Logarithmicfrequency plots (Bode plots)
ofthe normalized mechanical impedance ofa structure

Ig[gk(j1])]=lg[-j/1]Xk(j1])J= Ig[Zii(jwlwo)/Zo] ; Eq.(3.192)
within the range of damping ratio (D=) ~ ~ 1

Logarithmic gain (magnitude ratio in decibel)

20

t [/]111-10

~
lx"'l

1

..o,t
0,1

+40

dB

+30

+10

o

x+­
2

[/J

2 s v] 10

Y
_ClJ _

ClJo

1

Phase angle (phase difference)

+ 90,-;.0Ei=::a=rt:;:T:Tl=rm1tEEm1=ffi R~~I~~~i

~"-
~x:i
~
t>-900

IF

t

Fig. B.12. Magnitude and phase plots of driving-point impedance
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Frequency Response Plots
Irn[-lm{j1J)] - Re[ -lm{j1J))-curves

Polar frequency-response loci (Nyquist plots)
ofthe normalized dynamic compliance ofa structure

-lm(j1J)=-~ii(jw/wo)/Cm ;
within the range of damping ratio (D=)~;§ 1

-3- I. ~3 [ / ] - I. 0

~ ..........---'----:;M~~~n:r?2:j~~~ :;;-7F£urR:-e~[--:;'rI-:m~(;-:-j:7J):-;J~-':.=- ~'
. -
arc[:-Ym (j 1JJ}

-.... - - ...

Fig. B.13. Polar plots of driving-point dynamic compliance, elements in parallel,
excitation force via unbalanced rotating mass
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Frequency Response Plots
19 1-'ym(j17)1-19 17 - and arc [-'ym(j17)] - 19 17 -curves

Logarithmic frequency plots (Bode plots)
ofthe normalized dynamic compliance ofa structure

19 [-'ym( j17)]=19 [,Qjj(jw/WO)/Ck] ;

within the range of damping ratio (0=) t;~ 1

Logarithmic gain (magnitude ratio in decibel)

0,5

1

+10

-10

o

:±!±I::l::lliJ:I--+- +20

dB

1Ofi
0,1

0,1

>-~ I
I 5

t 2°lll[/ J

~ 10
~

Phase angle (phase difference)
0°t __ o

f?'J

Fig. B.14. Magnitude and phase plots of driving-point dynamic compliance



www.manaraa.com

Frequency Response Plots 359

Frequency Response Plots
1m [-~m(jt])] - Re[-~m(jt])l-curves

Polar frequency-response loci (Nyquist plots)
ofthe normalized dynamic stiffness ofa structure

-~m(jt])= -li;;(jw/wo)/Kk ;

within the range of damping ratio (D=) ~ ~ 1

00

-+---+-~

-t-- -+, ~,

i
!
i

7J;1,4. - I ..
5 _..~

-~=1,5 ~~1, - i ~:

- 7J7j:~ 1)=1JJ geometric I OC~;-;;t} 7l.= 7J-- , - I "' ....-
--"ij=5' resonan_amplitude --r.__T

_ _ ~s:

1)=00 / - -- '1- -8
~- ~o ~o ~o T6"(Jo 1700 180 0

-0
o

7l. S 1{ resonance
o of phase

Q
c
"

..
~~--------:~--;::;--~ ---~&--=-t:-:-'~~~:l-

-j/m[-Xm(j 7J)] ~
7J"'1,2

Fig. B.15. Polar plots of driving-point dynamic stiffness
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Frequency Response Plots
IgI-Xm{j1J)I - Ig TJ - and arc [-Xm{jTJ)]- Ig TJ -curves

Logarithmic frequen cy plots (Bode plots)
ofthe normalized dynamic stiffness ofa structure

Ig[-Xm{jTJ)] =Ig[ -!s';;( jw!wO)/Kk] ;

with in the range of damping ratio (D=) ~ ~ 1

Logarithmic gain (magnitude ratio in decibel)

- 20

1 •

· 1

2

,.

,u.! .i' ..... . .L. ~

+ ' H! •.
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, .
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10 +20

dB

--..
"'"

1+
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I
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Fig. 8.16. Magnitude and phase plots of driving-point dynamic stiffness



www.manaraa.com

Appendix C

Frequency Response Plots of Power

Complex Power Plots
(Nyquist plots, power component plots)

Performance Criteria

Frequency-response specifications ofpower
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......

. :::0:
:t

t ..: ....

-,.'-' J, ,,-flS77.{geon:'E!tnc ocus0 reactive
I c ./#,6.: • : am IItude resonance

Frequency Response Plots
1m[Kk*'(j1J)] - Re[Kt {j1J)]-curves

Polar frequency-response loci (Nyquist plots)
ofthe normalized complex power at the driving point

Kt (j1J)=j1JKk*{j1J)=~~{jw/%)/So ; Eq.(5.87b)
within the range of dampin g ratio (D=)~~ 1

l"<....'

Stia
h
I:>.

-j

+.......'

-t.j -_..oc--t·_- .-;;..~I-_=__+---..;,~=:::.:.:.;.+__..:..::::;.;;::.;...:.._ --:.+--+ Clo

....'

-Jj

+o,t.j

[/]

Fig. C. l. Polar plots of driving-point complex power, elements in parallel,
exciting motion by a displacement
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Power Frequency Plots
Re[Kt' (j1])]-1]-curves

Frequency-response plots
ofthe normalized active power at the driving point

Re [Kt(j1])]=p(w/%)/So ;Eq.(5.88a)
within the range of damping ratio (D=)~ ~ 4

t

10
(/]

9

5

4

1

0" - - - -2
W1J--_, WI)

Fig. C.2. Frequency plots of driving-point active power
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Power Frequency Plot
1m lKk*'(j7])] - 7]- curve
Frequency-response plot

ofthe normalized reactive power at the driving point

1m LK: '( j7])]=Q(w/%)/So ;Eq.(5.88b)
for all values of damping ratio S

2
"aJ!!..._
I U)"

Fig. C.3. Frequency plot of driving-point reactive power
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Power Frequency Plots
Polar frequency-response loci (Nyquist plots)

ofthe normalized complex power at the driving point

ICj1J [1-ICXtU1J)]=§B*(jw/wo)/So ; [120], Eq.(213)

for the value of the damping ratio ~=O,05

within the range of stiffness ratio O,04~IC=ki(kl+~)~O , 1

_. Ii .!%g;~~ :~...

-aot +0.02 "'0,03 +0,0<: +0,05 +0,1

Fig. CA. Frequency plots of driving-pointcomplex power, elements in parallel,
exciting force viaadditional spring
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Power Frequency Plots
1m {.u&j1J[1-.uX':(j1J)]} - Re{...} - curves
Polar frequency-response loci (Nyquist plots)

ofthe normalized complex power at the driving point

.uXkmj1J[1-.uXm*(j1J)]=.§B* (jw/wo)/So ;[120], Eq.(217)
for the value of the damping ratio ~=0,05

within the range of mass ratio 0,04~.u=m:/(ml+m2)~ 0, 1

+0,01 tQOZ

-O,075j

-q1j

-q125j IIRw.t1iliE

to,05 rOP75 [/J 10,1

h fill"
. geometric locus of
. reactive amplitude
anti resonance

Fig. C.S. Frequency plots of driving-point complex power, elements in parallel,
excitation force via unbalanced rotating mass
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- circuit transform (loop velocities) 237
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back effect 41, 72
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bandwidth method 183
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bilateral signal flow 39, 72, 258
block diagram 9, 71
Bode plot 186,347,351
bond graph 63, 72
- acausal 65
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- system 68, 69
branch 58
breakpoint (comer) frequenc y 187

cascade connection 11, 22, 31, 46, 280
causal description 258
causal matrices 262
causality principle 114
chain (transmission) matrix 21,22,48
chain (transmission) parameters 21
characteristic equation 78, 148
characteri stic parameter (of a sinusoid)

93
- magnitude 84, 92
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characteristic values (eigenvalues) 119,

148
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circuit diagram 48
closed-loop system 12
combined-flow diagram 58, 61
combined motion 87, 162,322,323
comparator 13
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complete (total) response (combined

motion) 86, 142, 144, 162
complex angular frequenc y 139
complex power
- input 266, 268
- output 266,271
- transmission factor 270, 275

(Rayleigh quotient)
- transmission ratio 265

(of phasor products)
complexor (phasor ratio) 92, 172, 207
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- dynamic stiffnesses 214, 220, 238,

300
- mechanic al impedances 221,238
- mobilities 212,225,229
component relationship 28, 50, 65, 202
- constitutive (material) 204, 205
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- dynamic (temporal) 204, 205
composite 2-port 22
composite mechanical system 217
computerized model 3
concept of supernodes 249
condition of beating 89
condition of resonance 88, 182
conformal mapping 166
conservative system 51
constant-force generator 37
continuous system 47,281
contour integral
- corresponding 118, 156
- intended 121
contral law 13
control system 2
control system design 13,247
control system structure 12
control theory 77
convergence criterion 103, 129, 141
convolution approach 112, 123, 131, 135,

153, 165
convolution integral 112, 154
- approximate evaluation 115,333,334
- graphical interpretation 115, 332
corner (breakpoint) frequency 187
corner frequency ratio 188
correction gain 191, 194
correlation function 127

auto- 127,131,135,340
- cross- 128, 130
- filter 132, 135
correspondence 103, 140, 154
coupler 33, 60
- converter 33,47
- transformer 33
critical damping coefficient 76
cutset equations 249,251,254
cut-set
- of a network 58
- simplification 253

d'Alembert's principle 54, 199
damper 30, 51
damping coefficient
- attenuation 75
- (viscous) linear 74
damping ratio (fraction of critical damp-

ing) 76
data processing 106, 125, 180
delta function 109, 167
delta functional 135, 168
design specifications 237, 244, 316
detailed model 47

detuning (tuning off resonance) 246
diagram 9, 71
- schematic (visually descriptive) 9,

70
- systematic (interconnection) 9, 71
differential equation 55, 60, 75
direct drive 249
displacement (response) 74, 75
- amplitude 84
- phase angle 84
displacement response factor (amplitude

ratio) 85, 92, 173
distribution (generalized function) 104,

194
domain
- original (time-; to) 103
- subsidiary, corresponding (frequency;

w -; po) 103, 140
driving power of vibrators 298
Duhamel's integral 112
duty cycle 99
dynamic characteristics (ofa structure)

207, 231, 235
- component (element) 212,214
- overall (composite) 208,217
dynamic compliance (receptance) 174,

207
- concept of 207,211,297
- direct (driving-point) 177, 208, 223,

229, 253
- plane 174, 226, 230, 345, 357
- techniques (analysis) 249,252
- transfer 177, 208
dynamic equilibrium statement 54
dynamic stiffness 178, 208
- concept of 211
- converted (direct) 305, 310
- direct (driving-point) 178, 208, 221,

300
- plane 222,349,359
- transfer 178, 208, 299
dynamic system 2
dynamics 199
- analytical 199
- synthetical 200

effort variable 7, 21, 26, 64, 258
effort-flow characteristic (frequency

responses of individual components)
265

effort-flow couple (individual components)
20,52,64,262,265,299,309

effort-flow product (actual energy flow)
265,274,285,302,309
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- dual (force-to-voltage) 26,31,38
- true-connected (force-to-current) 26
element, general type of 5, 50
- P-storage 5, 30, 51
- T-storage 5, 28, 50
- dissipator 30, 51
element force 50, 94, 240, 243, 300
- elastic (spring) 50, 300
- inertial (mass) 51,300
- damping (damper) 52,300
element laws, fundamental (linear element

characteristics) 28,50,213
element parameters 50, 74
- elastic (spring) constant (stiffness) 50,

74
- linear (viscous) damping coefficient

51,74
- mass 51,74
elementary transform pair 161, 164, 169,

170,171
energetic system approach 261
energetic system 257,283
energy continuity 67
energy dissipation 51, 65
energy flow characteristic (frequency

response of power) 265, 286, 309, 311
energy transaction 257
- compensative 291
- dissipative 290
equation of motion 55,60,74
equivalent viscous damping coefficient 81
ergodic process 126
excitation (input) 75
- actual 90
- complex 90
- phasor 92
- transform (spectral density) 102, 104
excitation (function, types of)
- harmonic, simple (sinusoidal) 84
- non-periodic 98, 104, 109
- periodic 96
- pulse-train 98
- random 129
- single-pulse 104
- singularity functions 167
- transient (shock) 109,116,143,154
excitation (quantity)
- displacement 178, 249, 298
- force 37,52, 65, 74, 177
- torque 253
- velocity 37, 52 65, 178
expansion theorem 161
experimental modelling
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fatigue testing machine 249, 296
feedback control system 12
filtering property (mechanical) 137, 189
finite element method 201
flat tuning 246
flexibility influence coefficients 200
flow (general)
- energy 58, 63
- signal 58, 63
flow of (power and) energy 257
- dissipative (average) 279, 287, 290,

311
- idle (wattless) 279,287, 290, 311
flow variable 7, 21, 26, 64, 258
fluid capacitance 47
fluid conductor 47
fluid impedance 47
fluid inductance 47
fluid resistance 47
force excitation (external force) 75, 84,

98,104,141,167
force transmissibility 28, 252
forced vibration 83, 85, 93, 322
forcing (driving) frequency
- angular 84, 181
forcing function (excitation)
- harmonic, simple (sinusoidal) 84
- non-periodic (transient) 98, 104, 116,

141,167
- periodic 96
forcing period 84
Fourier integral 102
Fourier (series)
- amplitude 96
- coefficient, complex 96, 99
- expansion 97, 101

phase angle 96
- series, complex 96, 97
Fourier spectrum 106
- continuous 105, 329
- line 100,326
Fourier transform 102, 104
Fourier transform method 106, 107
Fourier transform pair 103
Fourier-transformable function 103
free vibration 79, 82, 83, 319
frequency
- angular (circular) 76, 102
- cyclic 76
frequency normalization 180,307
frequency ratio 85, 180
frequency response 174, 180
frequency-response characteristic 109,

130, 146
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- Fourier (w-dom ain), frequency­
response function 109, 130, 134

- Laplace (p-domain ), transfer function
146,166

frequency-response function
- ofa structure (dynamic characteristic)

176, 198,207,283
- direct (driving-point) 177,253, 265
- transfer 177, 251, 265
frequency response plot 176, 343
- logarithm ic frequency plots (Bode)

186,347,351
- polar (Nyquist) 176, 345, 349
- rectangular, logarithmic (Nichols)

184, 346, 350
frequency response plot of power 308,

361
- polar power frequency plot 309, 312,

363
- power component frequency plot 313,

364,365
functional block diagram 10
fundamental configurations II, 22, 28,

67,219,232
- cascade (tandem) II , 22, 31, 46, 280
- mixed (parallel-series) 24, 219, 232
- parallel 12, 24, 3 I, 220

series 23, 227
fundamental frequency 97
fundamental sets of network equations 206

Gaussian distribution 126, 133, 136,342
generalized function (distribution) 104,

113, 115, 135, 168, 194
generali zed impedance 281
generalized Kirchhoff's laws 66, 203,

236
generalized transport process (2-port)

261,262
generic system 68, 74, 187

half-power method 183, 314
Hamilton's principle 200
harmonic frequency 96
harmonic number 99
Heaviside function (unit step) 112, 169
Hermitian form 269
high-frequency asymptote 190, 193
high-Q network 314
hydraulic servomechanism 43
hydrostatic power transmission 47

impedance angle 296
impedance matrix 24

impulse (pulse area) 99, 104
indicial mechanical impedance 240
individual conjugate variables (pair of rate

variables) 20, 52, 64, 262, 265, 299,
309

inertial frame 53
inertial reference system 53
instantaneous power 52, 258, 285
instantaneous value 94
integral theorem, Cauchy's 117, 156
integral transform method 106, 144, 194
integral-transformed model 95, 198, 212,

236
interacting loop (back effect) 41,72
interconnection requirement 22, 54, 66,

202,236
- force (equilibrium statement) 57,204,

217
- motion (compatib ility requirement)

57,204,218
interconnecti ve (spatial) relationship (dual;

pair of postulates) 22,57,66,202
- boundary (circuit ; across-measurement

principle) 57,203, 217
- incidence (vertex; through-measurement

principle) 57,203, 218
inverse Fourier transform 102
inverse Laplace transform 139
inversion formula approach 117, 134, 155
isolation amplifier 41

junction, ideal energy 67
- flow- (0-) 67, 68, 69
- effort- (1-) 67,68,69
junction structure 68

Lagrangian mechanics 200
Laplace integral 139
Laplace transform 139
Laplace transform method 143, 144
Laplace transform pair 140
Laplace-transformable function 141
linearity 13
logarithmic decrement 80
logarithmic gain 184, 187
- dropping 190
loop (circuit) 58
low-frequency asymptote 190, 193
low-loss network 314
low-pass filter 189, 191
lumped parameter model 74
lumped-parameter equivalent system 48
lumped-system analysis, general 202,

232,236,249
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magnification factor 85, 189
major resonant vibration 94, 245
mass 30,51
mass cancellation 252
mass matrix 56
mass-damper-spring system 74
mathematical model 2
mathematical modelling
matrix of the form 267
maximum height (pulse) 99, 104
mean value of the instantaneous power

287
mean-square value 127, 129, 132, 133,

136
mechanical 2-port 25
- composite (structure) 30
- elementary (degenerate) 28
- supplementary 32
mechanical admittance (mobility) 208
mechanical bond graph 68
mechanical circuit 53
mechanical circuit theorems 231
mechanical circuitry 202
mechanical duality 204
mechanical elements (I-ports)
- elementary (fundamental) 50, 57, 65,

74
- supplementary 50
mechanical generator (source)
- complete 36,37
- ideal constant-force 35,37
- ideal constant-velocity 35, 37
mechanical impedance 27, 178, 208
- concept of 209,282
- direct (driving-point) 178, 208, 221
- plane 222
- transfer 28, 178, 208
mechanical multiport 68
mechanical network analysis 202
mechanical plant 77
mechanical system design 237,310
mechanical two port 25, 28, 30, 32
mechanics
- analytical (Lagrangian) 200
- vectorial (Newtonian) 199
method of influence coefficients 200
method of matrix iteration 20 I
method of residues 119, 159
minor resonant vibration 94, 244
mixed connection (2-port configuration)

24
mixed domain dynamic system 58
mixed physical domain 63
mobility measurements 207, 212

Index 379

mobility (mechanical)
- concept of 207, 209
- direct (driving-point) 178,208,224,

229
- plane 226, 230
- transfer 28, 178, 208
modal analysis 210
model system 2
model validation 3
model verification 3
modified Hermitian form 267
modified quadratic form 272
modified Rayleigh quotient 274
modulator 41
modulus (magnitude) of
- dynamic compliance 243
- dynamic stiffness 239,244, 301
- mechanical impedance 239
- mobility (mechanical) 243
moment of inertia 253
multiple-order pole 163
multiport 63
- component (basic) 64,65
- interconnected (bonded) 64, 66
- field 69
multivariable system 39

narrow-band filter 137, 190
natural frequency
- damped 79
- undamped 76
natural period 76, 79
network diagram 48, 53, 72
Nichols plot 184, 346, 350
node (junction point; vertex) 54, 58, 300
noncausal description 257
non-conservative system 51
non-dimensional (natural) time 76
nonloading element 41, 72
normal distribution 126
normalized dynamic characteristic (ele-

ment; overall)
- dynamic compliance 181, 189,242
- dynamic stiffness 192,240,241,301
- mechanical impedance 240, 241
- mobility (mechanical) 243
Norton's theorem 235
Nyquist plot 176, 345, 349

one port 65
open-loop system 12
orientation conventions, general 19, 20,

54,57,66,202
oriented line segment 56
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oriented linear graph 56
original variable (Fourier, Laplace)
- time 103, 139
overall (composite) dynamic characteristic
- dynamic compliance 217,228
- dynamic stiffness 220
- mechanical impedance 221
- mobility (mechanical) 217,229
overdamped system 81

parallel connection 12,24, 31, 220
parameter estimation
- element 243
- system 248, 311
partial fraction 158, 164
partial noninteraction 45
path (branch) 58
path of integration 118, 156
performance criteria (control system

design)
- robustness and linearity 13
- speed and accuracy 13, 17, 18
- stability characteristics 13, 18
performance criteria (mechanical system

design; structural design)
- driving (rod) force amplitude 239, 301

modulus of dynamic stiffness 244,
246

- operating motion amplitude 243
- related energy dissipation (damping

effect) 240
- stability criteria (of motion) 148
performance criteria (stationary energy

flow; driving power)
- high-Q (low-loss network) 314
- power efficiency 278, 280
- powerfactor 297,313,314
- power parameters, significant 294,

296, 305
- power transmission factor 270, 276,

277
- transmission ratio (of power products)

265
- zero reactive power 314
performance equation (force-motion) 55
phase difference 85, 173, 189
phase lag (phase shift) 85, 189
phasor 27, 90
- configuration (polygon) 94, 222, 225,

230,300
- constant (resting) 93, 286
- diagram 95, 216, 217, 223, 226, 231,

298,301
- equation 91, 180

- method 91
- time-varying (rotating) 93,286
phasor (of physical quantities) 90, 92
- acceleration 299
- displacement 90, 92
- dynamic characteristic 179, 180,208,

221, 230, 299, 300
- force 92, 94, 300
- phasor ratio (complexor) 27, 172, 177,

179,280,207,214,236
phasor power (modified phasor method)
- concept of 261, 285, 293, 294, 297
- diagram 306
- driving (input) 304
- representation (vector) 286,288,291,

293,306
physical system 2
pole (singularity)
- simple (first-order) 118, 159, 163
- multi-order 163
position control 15, 60
position control system 16,61
potentiometer system 42, 60
power (stationary energy flow)
- actual (instantaneous) 285,302
- complex 266, 293, 304, 307
- parameters (significant) 269, 288, 290,

294,296,305
- plane, complex 294, 308, 310, 363
power components
- active 269, 273, 290
- average 287
- reactive 270, 274, 290
- wattless 287
power decomposition, spectral
- polar form 286, 288
- rectangular form 269,289, 291
power spectral density
- auto- 128, 132, 134, 341
- cross- 130
power state (transformation of)
- causal (vector) 258
- acausal (scalar) 257,266
- steady-state 260
power transactions
- of energetic systems 257
- in vibrations 261
power transmission factor

(Rayleigh quotient)
- active 270
- reactive 277
power-factor correction 314
probability density function 127, 136,

342
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- analysis 1, 2, 3, 70, 198, 207, 210,

231, 252, 261
- instrumentation (measurement; calibra­

tion) 251, 261
- synthesis (design) 18, 70, 237, 244,

261,298,310
problem (of a 2-port network)
- insertion 263
- transfer 263, 265, 279
- transmission 263, 265, 279
processing of transducer signals 252
proportional control 16
pulsatance (angular frequency)
- real 102
- complex 139
pulse control factor 99
pulse duration 99
pulse-type function (transient excitation)

109,116
p- (through) variable
- rate (flow variable) 7,20, 50
- state 7

Q factor 182, 314
quadratic form 272
quotient of Fourier transforms 178

random process 126
rational function (complex variable func­

tion)
- factored form 119,158,163
- partial fraction (expansion) 158, 161,

164
- ratio of polynomials 155
reactance theorem 234
reactive power 270, 274, 290
- actual 290
- parameter 297, 305
receptance (dynamic compliance) 174,

208
reciprocity theorem 233
reduction of diagram (reduction rules)
- block 18
- bond graph 69
- network 53,219,232
- signal-flow graph 19
relationship (topological)
- component (constitutive; dynamic) 28,

65,202
- interconnective (boundary; incidence)

22,57,66,202
repeated structures (parallel-series configu­

rations) 232, 249

Index 381

residue theorem, Cauchy's 117, 157
resonance
- condition of 88
- of amplitude 182, 186, 192
- of phase 182, 186, 193
resonance frequency (displacement) 182
resonance frequency ratio 182
response (output), displacement
- actual 75, 93, 283
- complex 93, 284
- phasor 92
- transform 108, 117, 155, 236
response calculation 76, III , 153
- classical approach 77, 83, 86, 89, 107
- convolution approach 112, 123, 131 ,

135, 153, 165
- inversion formula approach 117, 134,

155
response characteristic
- frequency- 109, 130, 146, 166
- time- 109, 112, 129, 147
response data plotting
- frequency response plot 176, 343
- power frequency plot 308, 361
- random data plot 137, 340
- shock response spectrum 124, 339
- time-history curve 162, 165. 317
review of dynamic compliance concept

211
review of dynamic stiffness concept 211
review of energy concept 257
review of mechanical impedance concept

209, 282
review of mobility concept 209
review of phasor method 284
review of phasor power concept 294
review of vibration-reduced design 246
root location 150
root-mean-square (r.m.s.) value (standard

deviation) 137, 138
root-locus method 150

scalar triple product 289
selecting vibratory specifications 237
series connection 23,227,228
set of network equations (generalized

Kirchhoff) 204, 236
- circuit (loop) 204,237
- vertex (node) 204,236
shock excitation (applied shock) 103, 106
- mechanical shock, ideal (constant; sim-

ple step) 112, 123, 167, 169,336
- shock pulse, ideal (simple time func­

tion) 109,335
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110, 147, 169, 335
170

113, 169,336

382 Index

- shock pulse, rectangular 104, 109,
331,337,338

- shock pulsating 98
shock motion (history) 116, 337, 338
- primary response 121, 123
- residual response 118, 123
shock response spectrum, displacement

124,339
si-function 99
signal 4-pole 39, 263
signal amplifier 41
signal flow graph 18, 71
signal-flow-diagram 9
significant frequency 182, 313
simplification of networks 232, 249
- cut-set (analysis) 249, 253
- repeated configurations (parallel- series

connections) 219,220,232,249,
253

simulation block diagram 10
single degree-of-freedom system (mass­

damper-spring system) 74, 179, 298,
314

single-variable system 9
singularity functions (typical wave forms)

167
- unit pulse 109, 167
- unit ramp 169
- unit step 112, 169
singularity function responses (time char-

acteristics)
- unit pulse response
- unit ramp response
- unit step response
solution 77, 83
- original (r-dornain) 108, 143
- transformed (w-domain) 108;

(p-domain) 144
source (generalized)
- P-variable (flow variable) 34
- T-variable (effort variable) 34
source, electrical
- ideal current 35
- ideal voltage 35
- independent current 36
- independent voltage 36
source, mechanical (generator)
- complete 37
- ideal constant-force 37, 52, 65
- ideal constant-velocity 37, 52, 65
source, controlled 59
specifications (system parameters)
- control 77
- vibratory 75, 85, 180, 189

specifications, response
- frequency 106, 189,238,343
- frequency, of power 312,361
- statistical 189, 317

steady-state (frequency-response) 88,
317, 322, 323

- transient (time-re sponse) 80, 88, II 0,
IB, 148, 317,319,320

specifications of polar plots 182
specifications of polar plots of power 312
spectral density 102, 106, 128
spring 28, 50
square wave (pulsat ing) 100
stable
- asymptoticall y 148, 149, 153
- neutrally 148, 153
- un- 148
standard deviation 136, 342
standard transform pair (of convolution)

115,154
static equilibrium condition 55
static response factor 180, 187
stationary process 126
steady state of energetic systems 260
step-type function (transient excitation)

143, 154
stiffness (elastic constant) 50, 74
stiffness influence coefficients 201
stiffness matrix 56
stochastic process 126
straight-line approxim ation 186,348,352
subsidiary variable
- real (angular) frequency (Fourier) 102
- complex frequency (Laplace) 117, 139
summer 12
superposition (convolution) integral 112
superposition theorem 233
system parameters
- complex 92, 109, 146, 172,207
- control 77, 82
- statistical 136
- vibratory 75, 85, 180, 189, 248, 311
systems modelling I , 7, 9, 18,48,63,69
- first step of 3

theory of analytical functions (complex
variable functions) 117, 156

Thevenin's theorem 234
three-degree-of-freedom torsional system

253
three port 66
through variable 4
- energy 7
- power (flow variable) 7
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time constant 76, 77
time-constant representation 77,82, 187
time-(t-)domain 76, 103
time response (actual displacement)
- complete (total) 86,87,88,89, 162,

165,317,322,323
steady-state (forced vibration) 85,
171,317,322,323

- transient (free vibration) 79,82, 166,
317,319,320

time-response characteristic 109, 112,
147, 150, 152

- unit pulse response (weighting function)
110, 129, 134, 147,335

- unit step response (Heaviside response)
113, 122, 336

torsional stiffness 253
torsional vibration 252
total noninteraction 41
transducer 33
transfer function 146
transfer function block diagram 10
transfer function concept 10, 166
transfer matrices 201
transform analysis methods 198
transform methods (integral) 95, 194
transformed component relationships 214
transformer 33
transientexcitations(shock excitations) 106
- pulse-type function 109, 116
- step-type function 147, 154
- transient harmonic 141, 142, 155
transmission loss 47
transmission matrix 22, 48, 262
transmission matrix of the ideal trans-

former 34
transmission matrix of the elements (fun-

damental mechanical) 29, 30
transmissionmatrix of the signal4-pole 40
transmission parameters 21,22,263,265
transmission system 9
true-connected analogy 26
tuning property (mechanical) 246
T- (across) variable 4
- rate (effort variable) 7,20,50
- state 7
two-degree-of-freedom (two-mass) system

49,53,61,205,250
two port, linear 66, 262
two-port network 20, 262
two-port diagram 20, 72
two-terminal-pair network 40

underdamped system 78

Index 383

variable, dynamic system 4, 7, 74, 262
- P- (through; l-point) 4
- T- (across; 2-point) 4
variable (transform method)
- original (time) 103, 139
- subsidiary (frequency) 103, 139
variance 136
vector representation (phasor method) 91
- of harmonics 97
- of phasor ratios (complexors) 172,

215,216,222,225,230,301
- of sinusoids 93, 298
vector representation of power (modified

phasor method) 285, 286, 292
- complex (input) power (input phasor

power) 293, 306
- decomposition, polar form 288
- decomposition, rectangular form 291
- instantaneous power (total vector) 286
velocity transmissibility 28
vibration, types of
- deterministic 126
- (simple) harmonic (sinusoidal) 83,85,

89, 93
- non-periodic (aperiodic) 101, 120, 122
- periodic (multi-sinusoidal) 96
- random 125, 126, 129
- steady-state (forced) 86, 93, 162
- transient (free) 79,82,83, 139, 162
vibration and shock generating equipment

296
vibration generator, mechanical
- direct-drive (crank connecting rod-;

joke- ; cam-type) 249,295,298, 314
- reaction type (rotating; reciprocating

masses) 295,314
vibration generator system
- mechanical 249, 296
- electrodynamic 249, 296
- hydraulic (servo-motor) 44, 249, 296
vibration machines (utility) 261,286,298
vibration-reduced structure
- by mechanical detuning (resilient heavy

weight; stiff lightweight construction)
246

- by motion control 247,248

white noise 133
white random vibration 133
Wiener-Khinchin equations 128

zero state 86
zero-driving (input) response 144
zero-state response 86, 144
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